Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(22): 6898-6912, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37729429

ABSTRACT

Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFß/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.


Subject(s)
Hemangioblasts , Hematopoiesis , Animals , Mice , Humans , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Endothelium , Hemangioblasts/metabolism
2.
Cytometry A ; 101(11): 903-908, 2022 11.
Article in English | MEDLINE | ID: mdl-35253987

ABSTRACT

Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and can give rise to all the mature blood cell types in our body, while at the same time maintaining a pool of HSCs through self-renewing divisions. This potential is reflected in their functional definition as cells that are capable of long-term multi-lineage engraftment upon transplantation. While all HSCs meet these criteria, subtle differences exist between developmentally different populations of these cells. Here we present a comprehensive overview of traditional and more recently described markers for phenotyping HSCs and their downstream progeny. To address the need to assess the growing number of surface molecules expressed in various HSC-enriched fractions at different developmental stages, we have developed an extensive multi-parameter spectral flow cytometry panel to phenotype hematopoietic stem and multipotent progenitor cells (HSC/MPPs) throughout development. In this study we then employ this panel to comprehensively profile the HSC compartment in the human fetal liver (FL), which is endowed with superior engraftment potential compared to postnatal sources. Spectral cytometry lends an improved resolution of marker expression to our comprehensive approach, allowing to extract combinatorial expression signatures of several relevant HSC/MPP markers to precisely characterize the HSC/MPP fraction in a variety of tissues.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Cell Lineage , Flow Cytometry , Biomarkers/metabolism , Liver , Hematopoiesis , Cell Differentiation
3.
Nat Commun ; 13(1): 1103, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35232959

ABSTRACT

The human hematopoietic stem cell harbors remarkable regenerative potential that can be harnessed therapeutically. During early development, hematopoietic stem cells in the fetal liver undergo active expansion while simultaneously retaining robust engraftment capacity, yet the underlying molecular program responsible for their efficient engraftment remains unclear. Here, we profile 26,407 fetal liver cells at both the transcriptional and protein level including ~7,000 highly enriched and functional fetal liver hematopoietic stem cells to establish a detailed molecular signature of engraftment potential. Integration of transcript and linked cell surface marker expression reveals a generalizable signature defining functional fetal liver hematopoietic stem cells and allows for the stratification of enrichment strategies with high translational potential. More precisely, our integrated analysis identifies CD201 (endothelial protein C receptor (EPCR), encoded by PROCR) as a marker that can specifically enrich for engraftment potential. This comprehensive, multi-modal profiling of engraftment capacity connects a critical biological function at a key developmental timepoint with its underlying molecular drivers. As such, it serves as a useful resource for the field and forms the basis for further biological exploration of strategies to retain the engraftment potential of hematopoietic stem cells ex vivo or induce this potential during in vitro hematopoietic stem cell generation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Liver
4.
Blood Adv ; 4(24): 6204-6217, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33351116

ABSTRACT

Megakaryocytes (MKs) are responsible for platelet biogenesis, which is believed to occur canonically in adult bone marrow (BM) and in the fetal liver during development. However, emerging evidence highlights the lung as a previously underappreciated residence for MKs that may contribute significantly to circulating platelet mass. Although a diversity of cells specific to the BM is known to promote the maturation and trafficking of MKs, little investigation into the impact of the lung niche on the development and function of MKs has been done. Here, we describe the application of single-cell RNA sequencing, coupled with histological, ploidy, and flow cytometric analyses, to profile primary MKs derived from syngeneic mouse lung and hematopoietic tissues. Transcriptional profiling demonstrated that lung MKs have a unique signature distinct from their hematopoietic counterparts, with lung MKs displaying enrichment for maturation markers, potentially indicating a propensity for more efficient platelet production. Reciprocally, fetal lung MKs also showed the robust expression of cytokines and growth factors that are known to promote lung development. Lastly, lung MKs possess an enrichment profile skewed toward roles in immunity and inflammation. These findings highlight the existence of a lung-specific MK phenotype and support the notion that the lung plays an independent role in the development and functional maturation of MKs. The immune phenotype displayed by lung MKs also introduces their potential role in microbial surveillance and antigen presentation.


Subject(s)
Megakaryocytes , Thrombopoiesis , Animals , Flow Cytometry , Lung , Mice , Phenotype
5.
STAR Protoc ; 1(2): 100102, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32954369

ABSTRACT

The protocols herein outline the use of qRT-PCR to detect the presence of SARS-CoV-2 genomic RNA in patient samples. In order to cope with potential fluctuations in supply chain and testing demands and to enable expedient adaptation of reagents and assays on hand, we include details for three parallel methodologies (one- and two-step singleplex and one-step multiplex assays). The diagnostic platforms described can be easily adapted by basic science research laboratories for SARS-CoV-2 diagnostic testing with relatively short turnaround time. For complete details on the use and execution of this protocol, please refer to Vanuytsel et al. (2020).


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Disease Notification/methods , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Humans , SARS-CoV-2/isolation & purification , Software
6.
Med ; 1(1): 152-157.e3, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32838351

ABSTRACT

BACKGROUND: Significant delays in the rapid development and distribution of diagnostic testing for SARS-CoV-2 (COVID-19) infection have prevented adequate public health management of the disease, impacting the timely mapping of viral spread and the conservation of personal protective equipment. Furthermore, vulnerable populations, such as those served by the Boston Medical Center (BMC), the largest safety net hospital in New England, represent a high-risk group across multiple dimensions, including a higher prevalence of pre-existing conditions and substance use disorders, lower health maintenance, unstable housing, and a propensity for rapid community spread, highlighting the urgent need for expedient and reliable in-house testing. METHODS: We developed a SARS-CoV-2 diagnostic medium-throughput qRT-PCR assay with rapid turnaround time and utilized this Clinical Laboratory Improvement Amendments (CLIA)-certified assay for testing nasopharyngeal swab samples from BMC patients, with emergency authorization from the Food and Drug Administration (FDA) and the Massachusetts Department of Public Health. FINDINGS: The in-house testing platform displayed robust accuracy and reliability in validation studies and reduced institutional sample turnaround time from 5-7 days to less than 24 h. Of over 1,000 unique patient samples tested, 44.1% were positive for SARS-CoV-2 infection. CONCLUSIONS: This work provides a blueprint for academic centers and community hospitals lacking automated laboratory machinery to implement rapid in-house testing. FUNDING: This study was supported by funding from the Boston University School of Medicine, the National Institutes of Health, Boston Medical Center, and the Massachusetts Consortium on Pathogen Readiness (MASS CPR).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/genetics , Safety-net Providers , Sensitivity and Specificity
7.
Exp Neurol ; 309: 119-133, 2018 11.
Article in English | MEDLINE | ID: mdl-30056160

ABSTRACT

Olfactory ensheathing cells (OECs) are unique glia that support axon outgrowth in the olfactory system, and when used as cellular therapy after spinal cord injury, improve recovery and axon regeneration. Here we assessed the effects of combining OEC transplantation with another promising therapy, epidural electrical stimulation during a rehabilitative motor task. Sprague-Dawley rats received a mid-thoracic transection and transplantation of OECs or fibroblasts (FBs) followed by lumbar stimulation while climbing an inclined grid. We injected pseudorabies virus (PRV) into hindlimb muscles 7 months post-injury to assess connectivity across the transection. Analyses showed that the number of serotonergic (5-HT) axons that crossed the rostral scar border and the area of neurofilament-positive axons in the injury site were both greater in OEC- than FB-treated rats. We detected PRV-labeled cells rostral to the transection and remarkable evidence of 5-HT and PRV axons crossing the injury site in 1 OEC- and 1 FB-treated rat. The axons that crossed suggested either axon regeneration (OEC) or small areas of probable tissue sparing (FB). Most PRV-labeled thoracic neurons were detected in laminae VII or X, and ~25% expressed Chx10, a marker for V2a interneurons. These findings suggest potential regeneration or sparing of circuits that connect thoracic interneurons to lumbar somatic motor neurons. Despite evidence of axonal connectivity, no behavioral changes were detected in this small-scale study. Together these data suggest that when supplemented with epidural stimulation and climbing, OEC transplantation can increase axonal growth across the injury site and may promote recovery of propriospinal circuitry.


Subject(s)
Axons/physiology , Cell Transplantation/methods , Electric Stimulation Therapy/methods , Neuroglia/physiology , Olfactory Bulb/cytology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Epidural Space/physiology , Female , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Neuroglia/transplantation , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Transduction, Genetic
8.
Neurobiol Learn Mem ; 134 Pt B: 360-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27555232

ABSTRACT

The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish's hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory.


Subject(s)
Habituation, Psychophysiologic/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Reflex/physiology , Zebrafish/physiology , Animals , Larva , Zebrafish Proteins
9.
Appl Environ Microbiol ; 70(10): 6333-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15466587

ABSTRACT

Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica.


Subject(s)
Bacteria/metabolism , Oils/metabolism , Acinetobacter/growth & development , Acinetobacter/metabolism , Alkanes/metabolism , Alphaproteobacteria/growth & development , Alphaproteobacteria/metabolism , Bacteria/growth & development , Drug Stability , Emulsions , Hydrophobic and Hydrophilic Interactions , Rhodococcus/growth & development , Rhodococcus/metabolism , Silicon Dioxide , Sphingomonadaceae/growth & development , Sphingomonadaceae/metabolism , Surface Tension , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...