Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 437: 129277, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35724619

ABSTRACT

Biofilters usually have poor VOC removal performance at temperatures lower than 20 °C. In this study, two quorum sensing (QS) enhancement methods, which are addition of exogenous N-acyl-homoserine lactones (AHLs) and inoculation of AHL-producing bacteria, were applied in biofilters treating gaseous toluene at a low temperature of 12 °C. Their effects on biofilter performance and biofilm characteristics were investigated. The results showed that adding exogenous AHLs and AHL-producing bacteria in biofilters raised the average toluene elimination capacity by 39% and 26% respectively, and raised the average mineralization efficiency by 25% and 47% respectively in first 24 days. In addition, the two QS enhancement methods could increase the attached biomass by 48% and 87% respectively and made the biofilm distribute more uniform by increasing its extracellular polymeric substances content and microbial adhesive strength. The two QS enhancement methods resulted in more mesopores in biofilm, lower O/C and (O+N)/C of organic elements in biofilm, and increased the solubility of toluene in liquid phase, which all benefit VOCs mass transfer in biofilters. These results demonstrate that QS enhancement methods have the potential to optimize the biofilm and thus improve the performance of biofilters treating VOCs at a low temperature. This work provides us a new choice to improve industrial-scale biofilters treating VOCs at high latitude regions or in winter.


Subject(s)
Quorum Sensing , Toluene , Acyl-Butyrolactones , Bacteria , Biofilms , Gases , Temperature , Toluene/analysis
2.
Sci Total Environ ; 807(Pt 1): 150589, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34597570

ABSTRACT

In this study, effects of two quorum sensing (QS) enhancement methods on the performance and biofilm of biofilters treating chlorobenzene were investigated. Three biofilters were set up with BF1 as a control, BF2 added exogenous N-acyl-homoserine lactones (AHLs) and BF3 inoculated AHLs-producing bacterium identified as Acinetobacter. The average chlorobenzene elimination capacities were 73 and 77 g/m3/h for BF2 and BF3 respectively, which were significantly higher than 50 g/m3/h for BF1. The wet biomass of BF2 and BF3 with QS enhancement eventually increased to 60 and 39 kg/m3 respectively, and it was 29 kg/m3 for BF1. Analysis on biofilms in three biofilters showed that distribution uniformity, extracellular polymeric substances production, adhesive strengths, viability, and metabolic capacity of biofilms were all prompted by the two QS enhancement methods. Comparisons between the two QS enhancement methods showed that adding exogenous AHLs had more significant enhancing effect on biofilm due to its higher AHLs level in start-up period, while AHLs-producing bacteria had an advantage in enhancing bacterial community diversity. These results demonstrate that QS enhancement methods have the potential to optimize the biofilm and thus improve the performance of biofilters treating recalcitrant VOCs.


Subject(s)
Gases , Quorum Sensing , Acyl-Butyrolactones , Biofilms , Chlorobenzenes
3.
Chemosphere ; 291(Pt 3): 132951, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34826444

ABSTRACT

A biofilter treating gaseous VOCs is usually a packed bed system which will encounter bed clogging problems with increased pressure drop and uneven gas flow in the filter bed. In this study, a lab-scale fluidized bed reactor (FBR) was set up treating gaseous toluene and compared with a packed bed reactor (PBR) with the same bed height of 150 cm. During 45 days of operation, the average elimination capacity of the FBR was 242 g m-3∙h-1, similar to that in the PBR (228 g m-3∙h-1) under an inlet toluene concentration of 100-300 mg m-3 and an empty bed residence time (EBRT) of 0.60 s. A better mass transfer was also confirmed in the FBR by molecular residence time distribution measurement. The pressure drop of the PBR increased dramatically and exceeded 8000 Pa m-1 while that of the FBR maintained approximately 200 Pa m-1. On the 40th day, the air flow distribution in the FBR was more homogeneous than that in the PBR. The differences in pressure drop and air flow distribution were due to a much lower and more uniform distribution of biomass in the FBR than that in the PBR. The detached biomass collected from the off-gas of the FBR was almost 13 times of that from the PBR. Similar microbial community structures were observed in both systems, with the dominant bacterial genus Stenotrophomonas and the fungal genera Meyerozyma, Aspergillus. The results in this study demonstrated that the FBR could achieve a more stable performance than a PBR in long-term operation.


Subject(s)
Gases , Toluene , Bacteria , Biodegradation, Environmental , Biomass , Bioreactors , Filtration
4.
Microbiome ; 9(1): 14, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436067

ABSTRACT

BACKGROUND: The ozonation of biofilters is known to alleviate clogging and pressure drop issues while maintaining removal performances in biofiltration systems treating gaseous volatile organic compounds (VOCs). The effects of ozone on the biofilter microbiome in terms of biodiversity, community structure, metabolic abilities, and dominant taxa correlated with performance remain largely unknown. METHODS: This study investigated two biofilters treating high-concentration toluene operating in parallel, with one acting as control and the other exposed to low-dosage (200 mg/m3) ozonation. The microbial community diversity, metabolic rates of different carbon sources, functional predictions, and microbial co-occurrence networks of both communities were examined. RESULTS: Consistently higher biodiversity of over 30% was observed in the microbiome after ozonation, with increased overall metabolic abilities for amino acids and carboxylic acids. The relative abundance of species with reported stress-tolerant and biofilm-forming abilities significantly increased, with a consortium of changes in predicted biological pathways, including shifts in degradation pathways of intermediate compounds, while the correlation of top ASVs and genus with performance indicators showed diversifications in microbiota responsible for toluene degradation. A co-occurrence network of the community showed a decrease in average path distance and average betweenness with ozonation. CONCLUSION: Major degrading species highly correlated with performance shifted after ozonation. Increases in microbial biodiversity, coupled with improvements in metabolizing performances of multiple carbon sources including organic acids could explain the consistent performance commonly seen in the ozonation of biofilters despite the decrease in biomass, while avoiding acid buildup in long-term operation. The increased presence of stress-tolerant microbes in the microbiome coupled with the decentralization of the co-occurrence network suggest that ozonation could not only ameliorate clogging issues but also provide a microbiome more robust to loading shock seen in full-scale biofilters. Video abstract.


Subject(s)
Filtration/methods , Microbiota/drug effects , Ozone/pharmacology , Biofilms/drug effects , Biomass , Toluene
5.
Sci Total Environ ; 724: 137977, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32247972

ABSTRACT

The biogas produced in food waste anaerobic digestion (FWAD) contains H2S which can lead to corrosion, bad smell and poisoning accident. To control H2S pollution, the characteristics and mechanisms of H2S production in FWAD should be known. In this study, a lab-scale FWAD batch test was applied for 20 days under 35 °C. The production potential and average concentration of H2S were 765 ± 163 g/t (TS) and 1065 ± 267 ppm, respectively. 76% of total H2S was produced within 6 h on the first day of fermentation, acidification and gas production were key reasons for high H2S production at this time. Compared to H2S peak production time, that of methane was long (4 days) and after that of H2S. Sulfides were found to be the dominant form of sulfur (accounting for 20-70% of total sulfur) in the mixed fermentation liquor in fermentation batch. These sulfides were from protein, which could be decomposed slowly to sulfide by protein-using bacteria and methanogen at the time of methane production peak, and sulfate, which could be converted to sulfide by Sulfate reducing bacteria (SRB) during the first two days of fermentation. Protein would be the main contributor to sulfide/H2S for the continuous feeding FWAD system in long term operation, due to its presence as the main form of sulfur in food waste.


Subject(s)
Hydrogen Sulfide/analysis , Refuse Disposal , Anaerobiosis , Biofuels , Bioreactors , Food , Methane
6.
Chemosphere ; 244: 125529, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32050333

ABSTRACT

Fluidized bed bioreactors can overcome the limitations of packed bed bioreactors such as clogging, which has been observed in the industrial application for decades. The key to establish a gaseous fluidized bed bioreactor for treatment of volatile organic compounds is to achieve microbial growth on a light packing material. In this study, Two fungal species and two bacterial species were isolated to build a fungal fluidized-bed reactor (FFBR). A light packing material with wheat bran coated on expended polystyrene was used. The FFBR was operated for 65 days for gaseous ethanol removal and obtained elimination capacities of 500-1800 g∙m-3∙h-1 and removal efficiencies of 20-50%. The pressure drops was well controlled with values around 400 Pa∙m-1. Stress tolerant genera including Aureobasidium, Stenotrophomonas and Brevundimonas were dominant. Meyerozyma, whose species were present in an initial inoculated isolate, was detected among the dominant species with 28.70% relative abundance; they were reported to degrade complicated compounds under similarly stressful environments.


Subject(s)
Bioreactors/microbiology , Ethanol/metabolism , Fungi , Gases
7.
AMB Express ; 8(1): 160, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30284060

ABSTRACT

The effects of inlet VOCs (Volatile Organic Compounds) shifts on microbial community structure in a biofiltration system were investigated. A lab-scale biofilter was set up to treat eight VOCs sequentially. Short declines in removal efficiency appeared after VOCs shifts and then later recovered. The number of OTUs in the biofilter declined from 690 to 312 over time. At the phylum level, Actinobacteria and Proteobacteria remained dominant throughout the operation for all VOCs, with their combined abundance ranging from 60 to 90%. The abundances of Planctomycetes and Thermi increased significantly to 20% and 5%, respectively, with the intake of non-aromatic hydrocarbons. At the genus level, Rhodococcus was present in the highest abundance (≥ 10%) throughout the experiment, indicating its wide degradability. Some potential degraders were also found; namely, Thauera and Pseudomonas, which increased in abundance to 19% and 12% during treatment with ethyl acetate and toluene, respectively. Moreover, the microbial metabolic activity declined gradually with time, and the metabolic profile of the toluene-treating community differed significantly from those of other communities.

8.
J Hazard Mater ; 324(Pt B): 732-738, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27894757

ABSTRACT

Activated sludge recycling has been developed as a novel technique to directly prevent volatile sulfides emission from wastewater influents. In this study, mechanisms and characteristics of dissolved sulfides removal in aqueous solution by activated sludge were investigated. When DO content in water was 0.49mg/L, 70% of removed dissolved sulfides were released back from the activated sludge by lowering pH to 1. The SEM/EDS result revealed that removed sulfur was fixed in activated sludge and the XPS result showed that fixed sulfur had an oxidation state of -2. FTIR results showed that primary amine group (R-NH2) could be one of the radical groups bonding sulfides. All these results verified that sulfides removal by activated sludge is primarily attributed to adsorption, rather than biodegradation, under low DO conditions in 40min. The equilibrium isotherm data fit the Langmuir isotherm model well. The maximum adsorption capacity (q0) ranged in 25-38mg/g at temperatures of 10-40°C. The adsorption kinetic data fit the pseudo-second-order model well. The amounts of adsorbed sulfides at equilibrium (qe) were positively proportional to temperature, initial sulfides concentration and agitation speed. These results indicate that sulfides adsorption could be a chemical sorption or ion exchange process.


Subject(s)
Sewage , Sulfides/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Aerobiosis , Biodegradation, Environmental , Kinetics , Models, Theoretical , Oxygen/chemistry , Sewage/chemistry , Sewage/microbiology , Solutions , Wastewater/chemistry
9.
Chemosphere ; 147: 248-55, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26766362

ABSTRACT

Reaction mechanisms between ozone and extracellular polymeric substances (EPS) can be the key of understanding the improvements in microbial aggregates properties by low-concentration ozonation. In this study, EPS are extracted from activated sludge and treated continuously by ozone gas at 270 ± 41 ppm. The reaction between ozone and EPS was investigated by observation of EPS component concentrations, functional groups and molecular weight distributions using UV-Vis spectrometry, excitation-emission matrix fluorescence spectroscopy (EEM), high performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). In a 12-hour-ozonation experiment, significant ozone consumption was observed in the first 4 h and protein concentration in EPS solution was reduced by 30 ± 12%. However, the polysaccharides concentration only had a slightly decrease at the end of the ozonation process. UV-Vis spectra and EEM spectra results suggest that ozone removed protein and fluorescent matters (SMP and tryptophan-like aromatic protein) rapidly by attacking specific amino acid residues on polypeptide chain. After ozonation, the molecular weight of polysaccharide and protein dropped by 4 orders of magnitude according to HPSEC results. TOC concentration of EPS solution was reduced by 13 ± 2% after ozonation. The loss in TOC could be explained by the observation of volatile organic compounds such as carboxylic acids, aldehydes and ketones in the off-gas detected by GC-MS. The results in this study can provide a better understanding towards the mechanisms of improvements in activated sludge properties by ozonation.


Subject(s)
Biopolymers/chemistry , Oxidants/chemistry , Ozone/chemistry , Sewage/chemistry , Chromatography, Gel , Gas Chromatography-Mass Spectrometry , Molecular Weight , Polysaccharides/chemistry , Proteins/chemistry , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...