Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468657

ABSTRACT

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Subject(s)
DNA Repair Enzymes/genetics , DNA Repair , DNA/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Inhibitors of Activated STAT/genetics , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/genetics , Animals , Cell Differentiation , DNA/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , Disease Models, Animal , Female , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Primary Cell Culture , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Protein Inhibitors of Activated STAT/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Transcription, Genetic
2.
Proc Natl Acad Sci U S A ; 116(22): 10952-10961, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31088970

ABSTRACT

Neuroinflammation is an important contributor to neuronal pathology and death in neurodegenerative diseases and neuronal injury. Therapeutic interventions blocking the activity of the inflammatory kinase IKKß, a key regulator of neuroinflammatory pathways, is protective in several animal models of neurodegenerative disease and neuronal injury. In Huntington's disease (HD), however, significant questions exist as to the impact of blocking or diminishing the activity of IKKß on HD pathology given its potential role in Huntingtin (HTT) degradation. In cell culture, IKKß phosphorylates HTT serine (S) 13 and activates HTT degradation, a process that becomes impaired with polyQ expansion. To investigate the in vivo relationship of IKKß to HTT S13 phosphorylation and HD progression, we crossed conditional tamoxifen-inducible IKKß knockout mice with R6/1 HD mice. Behavioral assays in these mice showed a significant worsening of HD pathological phenotypes. The increased behavioral pathology correlated with reduced levels of endogenous mouse full-length phospho-S13 HTT, supporting the importance of IKKß in the phosphorylation of HTT S13 in vivo. Notably, many striatal autophagy genes were up-regulated in HD vs. control mice; however, IKKß knockout partially reduced this up-regulation in HD, increased striatal neurodegeneration, and enhanced an activated microglial response. We propose that IKKß is protective in striatal neurons early in HD progression via phosphorylation of HTT S13. As IKKß is also required for up-regulation of some autophagy genes and HTT is a scaffold for selective autophagy, IKKß may influence autophagy through multiple mechanisms to maintain healthy striatal function, thereby reducing neuronal degeneration to slow HD onset.


Subject(s)
Huntington Disease , I-kappa B Kinase , Animals , Autophagy/genetics , Corpus Striatum/cytology , Corpus Striatum/pathology , Disease Models, Animal , Disease Progression , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Male , Mice , Mice, Knockout , Microglia/cytology , Microglia/pathology , Phosphorylation/genetics
3.
J Huntingtons Dis ; 7(2): 137-150, 2018.
Article in English | MEDLINE | ID: mdl-29843246

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder associated with aging, caused by an expanded polyglutamine (polyQ) repeat within the Huntingtin (HTT) protein. In HD, degeneration of the striatum and atrophy of the cortex are observed while cerebellum is less affected. OBJECTIVE: To test the hypothesis that HTT protein levels decline with age, which together with HTT mutation could influence disease progression. METHODS: Using whole brain cell lysates, a unique method of SDS-PAGE and western analysis was used to quantitate HTT protein, which resolves as a monomer and as a high molecular weight species that is modulated by the presence of transglutaminase 2. HTT levels were measured in striatum, cortex and cerebellum in congenic homozygous Q140 and HdhQ150 knock-in mice and WT littermate controls. RESULTS: Mutant HTT in both homozygous knock-in HD mouse models and WT HTT in control striatal and cortical tissues significantly declined in a progressive manner over time. Levels of mutant HTT in HD cerebellum remained high during aging. CONCLUSIONS: A general decline in mutant HTT levels in striatum and cortex is observed that may contribute to disease progression in homozygous knock-in HD mouse models through reduction of HTT function. In cerebellum, sustained levels of mutant HTT with aging may be protective to this tissue which is less overtly affected in HD.


Subject(s)
Corpus Striatum/metabolism , Disease Progression , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Aging , Animals , Cerebellum/metabolism , Cerebral Cortex/metabolism , Disease Models, Animal , Female , Gene Knock-In Techniques , Homozygote , Huntingtin Protein/genetics , Male , Mice, Inbred C57BL , Mutant Proteins/genetics , Mutant Proteins/metabolism
4.
Stem Cell Reports ; 10(1): 58-72, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29233555

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.


Subject(s)
Cognition , Huntington Disease/therapy , Motor Activity , Neural Stem Cells/transplantation , Recovery of Function , Animals , Cell Line , Disease Models, Animal , Heterografts , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Humans , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/physiopathology , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/pathology
5.
Proc Natl Acad Sci U S A ; 111(47): 16889-94, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385587

ABSTRACT

Although dominant gain-of-function triplet repeat expansions in the Huntingtin (HTT) gene are the underlying cause of Huntington disease (HD), understanding the normal functions of nonmutant HTT protein has remained a challenge. We report here findings that suggest that HTT plays a significant role in selective autophagy. Loss of HTT function in Drosophila disrupts starvation-induced autophagy in larvae and conditional knockout of HTT in the mouse CNS causes characteristic cellular hallmarks of disrupted autophagy, including an accumulation of striatal p62/SQSTM1 over time. We observe that specific domains of HTT have structural similarities to yeast Atg proteins that function in selective autophagy, and in particular that the C-terminal domain of HTT shares structural similarity to yeast Atg11, an autophagic scaffold protein. To explore possible functional similarity between HTT and Atg11, we investigated whether the C-terminal domain of HTT interacts with mammalian counterparts of yeast Atg11-interacting proteins. Strikingly, this domain of HTT coimmunoprecipitates with several key Atg11 interactors, including the Atg1/Unc-51-like autophagy activating kinase 1 kinase complex, autophagic receptor proteins, and mammalian Atg8 homologs. Mutation of a phylogenetically conserved WXXL domain in a C-terminal HTT fragment reduces coprecipitation with mammalian Atg8 homolog GABARAPL1, suggesting a direct interaction. Collectively, these data support a possible central role for HTT as an Atg11-like scaffold protein. These findings have relevance to both mechanisms of disease pathogenesis and to therapeutic intervention strategies that reduce levels of both mutant and normal HTT.


Subject(s)
Autophagy , Microtubule-Associated Proteins/physiology , Animals , Animals, Genetically Modified , Drosophila , Drosophila Proteins , Huntingtin Protein , Mice , Microtubule-Associated Proteins/genetics
6.
Exp Neurol ; 254: 90-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24440640

ABSTRACT

Assessing the efficacy of human stem cell transplantation in rodent models is complicated by the significant immune rejection that occurs. Two recent reports have shown conflicting results using neonatal tolerance to xenografts in rats. Here we extend this approach to mice and assess whether neonatal tolerance can prevent the rapid rejection of xenografts. In three strains of neonatal immune-intact mice, using two different brain transplant regimes and three independent stem cell types, we conclusively show that there is rapid rejection of the implanted cells. We also address specific challenges associated with the generation of humanized mouse models of disease.


Subject(s)
Graft Rejection/immunology , Heterografts/immunology , Huntington Disease/therapy , Immune Tolerance/immunology , Neural Stem Cells/immunology , Neural Stem Cells/transplantation , Animals , Animals, Newborn , Animals, Outbred Strains , Cells, Cultured , Corpus Striatum/cytology , Disease Models, Animal , Female , Graft Rejection/prevention & control , Graft Survival/immunology , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/immunology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL