Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 119(8): 2330-42, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19587445

ABSTRACT

Tubular damage following ischemic renal injury is often reversible, and tubular epithelial cell (TEC) proliferation is a hallmark of tubular repair. Macrophages have been implicated in tissue repair, and CSF-1, the principal macrophage growth factor, is expressed by TECs. We therefore tested the hypothesis that CSF-1 is central to tubular repair using an acute renal injury and repair model, ischemia/reperfusion (I/R). Mice injected with CSF-1 following I/R exhibited hastened healing, as evidenced by decreased tubular pathology, reduced fibrosis, and improved renal function. Notably, CSF-1 treatment increased TEC proliferation and reduced TEC apoptosis. Moreover, administration of a CSF-1 receptor-specific (CSF-1R-specific) antibody after I/R increased tubular pathology and fibrosis, suppressed TEC proliferation, and heightened TEC apoptosis. To determine the contribution of macrophages to CSF-1-dependent renal repair, we assessed the effect of CSF-1 on I/R in mice in which CD11b+ cells were genetically ablated and determined that macrophages only partially accounted for CSF-1-dependent tubular repair. We found that TECs expressed the CSF-1R and that this receptor was upregulated and coexpressed with CSF-1 in TECs following renal injury in mice and humans. Furthermore, signaling via the CSF-1R stimulated proliferation and reduced apoptosis in human and mouse TECs. Taken together, these data suggest that CSF-1 mediates renal repair by both a macrophage-dependent mechanism and direct autocrine/paracrine action on TECs.


Subject(s)
Kidney Tubules/physiology , Macrophage Colony-Stimulating Factor/physiology , Reperfusion Injury/physiopathology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Epithelial Cells/physiology , Fibrosis , Humans , Kidney Tubules/pathology , Macrophage Colony-Stimulating Factor/genetics , Macrophages/physiology , Mice , Mice, Inbred C3H , Receptor, Macrophage Colony-Stimulating Factor/genetics , Regeneration , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...