Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077232

ABSTRACT

Citrullination of proteins plays an important role in protein function and it has recently become clear that citrullinated proteins play a role in immune responses. In this study we examined how citrullinated collagen, an extracellular matrix protein, affects T-cell function during the development of autoimmune arthritis. Using an HLA-DR1 transgenic mouse model of rheumatoid arthritis, mice were treated intraperitoneally with either native type I collagen (CI), citrullinated CI (cit-CI), or phosphate buffered saline (PBS) prior to induction of autoimmune arthritis. While the mice given native CI had significantly less severe arthritis than controls administered PBS, mice receiving cit-CI had no decrease in the severity of autoimmune arthritis. Using Jurkat cells expressing the inhibitory receptor leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), Western blot analysis indicated that while CI and cit-CI bound to LAIR-1 with similar affinity, only CI induced phosphorylation of the LAIR ITIM tyrosines; cit-CI was ineffective. These data suggest that cit-CI acts as an antagonist of LAIR-1 signaling, and that the severity of autoimmune arthritis can effectively be altered by targeting T cells with citrullinated collagen.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Autoimmune Diseases , Animals , Arthritis, Rheumatoid/metabolism , Citrulline/metabolism , Collagen , Mice , Mice, Transgenic
2.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36139857

ABSTRACT

The pathophysiology of post-traumatic arthritis (PTOA) is not fully understood. This study used non-invasive repetitive mechanical loading (ML) mouse models to study biochemical, biomechanical, and pain-related behavioral changes induced in mice. Mouse models reflected the effects of the early stages of PTOA in humans. For the PTOA model, cyclic comprehensive loading (9N) was applied to each mouse's left knee joint. ML-induced biochemical and molecular changes were analyzed after loading completion. Cartilage samples were examined using gene expression analysis. Tissue sections were used in subsequent OA severity scoring. Biomechanical features and pain-related behavior were studied after 24 h and three weeks post-ML sessions to examine the development of PTOA. The loaded left knee joint showed a greater ROS/RNS signal than the right knee, which was not loaded. There was a significant increase in cartilage damage and MMP activity in the mechanically loaded joints relative to non-loaded control knee joints. Similarly, we found a difference in the viscoelastic tangent, which highlights significant changes in mechanical properties. Biochemical analyses revealed significant increases in total NO, caspase-3 activity, H2O2, and PGE2 levels. Gene expression analysis highlighted increased catabolism (MMP-13, IL-1ß, TNF-α) with a concomitant decrease in anabolism (ACAN, COL2A1). Histopathology scores clearly indicated increases in OA progression and synovitis. The gait pattern was significantly altered, suggesting signs of joint damage. This study showed that biomechanical, biochemical, and behavioral characteristics of the murine PTOA groups are significantly different from the control group. These results confirm that the current mouse model can be considered for translational PTOA studies.

3.
Immunohorizons ; 6(3): 224-242, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273098

ABSTRACT

Protein kinase D1 (PKD1), a ubiquitously expressed serine/threonine kinase, regulates diverse cellular processes such as oxidative stress, gene expression, cell survival, vesicle trafficking, Ag receptor signaling, and pattern recognition receptor signaling. We found previously that exposure to hypersensitivity pneumonitis (HP) inciting Ag Saccharopolyspora rectivirgula leads to the activation of PKD1 in a MyD88-dependent manner in various types of murine cells in vitro and in the mouse lung in vivo. However, it is currently unknown whether PKD1 plays a role in the S. rectivirgula-induced HP. In this study, we investigated contributions of PKD1 on the S. rectivirgula-induced HP using conditional PKD1-insufficient mice. Compared to control PKD1-sufficient mice, PKD1-insufficient mice showed substantially suppressed activation of MAPKs and NF-κB, expression of cytokines and chemokines, and neutrophilic alveolitis after single intranasal exposure to S. rectivirgula The significantly reduced levels of alveolitis, MHC class II surface expression on neutrophils and macrophages, and IL-17A and CXCL9 expression in lung tissue were observed in the PKD1-insufficient mice repeatedly exposed to S. rectivirgula for 5 wk. PKD1-insuficient mice exposed to S. rectivirgula for 5 wk also showed reduced granuloma formation. Our results demonstrate that PKD1 plays an essential role in the initial proinflammatory responses and neutrophil influx in the lung after exposure to S. rectivirgula and substantially contribute to the development of HP caused by repeated exposure to S. rectivirgula Our findings suggest that PKD1 can be an attractive new molecular target for therapy of S. rectivirgula-induced HP.


Subject(s)
Alveolitis, Extrinsic Allergic , Pneumonia , Protein Kinase C/metabolism , Alveolitis, Extrinsic Allergic/metabolism , Animals , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Protein Kinases , Saccharopolyspora
4.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948139

ABSTRACT

Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1-/- deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.


Subject(s)
Arthritis, Experimental/metabolism , Calcifediol/analogs & derivatives , Calcitriol/pharmacology , Receptors, Immunologic/biosynthesis , T-Lymphocytes/metabolism , Up-Regulation/drug effects , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Calcifediol/pharmacology , Mice , Mice, Knockout , Receptors, Immunologic/genetics , T-Lymphocytes/pathology
5.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L631-L643, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31940220

ABSTRACT

Hypersensitivity pneumonitis (HP) is an interstitial lung disease that may progress to fibrosis and significant risk of death. HP develops following repeated exposures to inhaled environmental antigens; however, only a fraction of the exposed population develops the disease, suggesting that host genetics contribute to disease susceptibility. We used the BXD family of mice with the Saccharopolyspora rectivirgula (SR) model of HP to investigate the role of genetics in susceptibility to HP. The BXD family is derived from a B6 mother and a D2 father and has been used to map susceptibility loci to numerous diseases. B6, D2, and BXD progeny strains were exposed to SR for 3 wk, and the development of HP was monitored. The B6 and D2 strains developed alveolitis; however, the cellular composition was neutrophilic in the D2 strain and more lymphocytic in the B6 strain. Hematoxylin-eosin staining of lung sections revealed lymphoid aggregates in B6 lungs, whereas D2 lungs exhibited a neutrophilic infiltration. Twenty-eight BXD strains of mice were tested, and the results reveal significant heritable variation for numbers of CD4+ or CD8+ T cells in the air spaces. There was significant genetic variability for lymphoid aggregates and alveolar wall thickening. We mapped a significant quantitative trait locus (QTL) on chromosome 18 for CD8+CD69+ T cells that includes cadherin 2 (Cdh2), an excellent candidate gene associated with epithelial-mesenchymal transition, which is upregulated in lungs of strains with HP. These results demonstrate that the BXD family is a valuable and translationally relevant model to identify genes contributing to HP and to devise early and effective interventions.


Subject(s)
Alveolitis, Extrinsic Allergic/genetics , Alveolitis, Extrinsic Allergic/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Genetic Variation/genetics , Alveolitis, Extrinsic Allergic/microbiology , Animals , Epithelial-Mesenchymal Transition/genetics , Female , Lung/immunology , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Neutrophils/immunology , Saccharopolyspora/immunology , Up-Regulation/genetics
6.
J Biol Chem ; 295(8): 2239-2247, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31932281

ABSTRACT

Multiple observations implicate T-cell dysregulation as a central event in the pathogenesis of rheumatoid arthritis. Here, we investigated mechanisms for suppressing T-cell activation via the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1). To determine how LAIR-1 affects T-cell receptor (TCR) signaling, we compared 1) T cells from LAIR-1-sufficient and -deficient mice, 2) Jurkat cells expressing either LAIR-1 mutants or C-terminal Src kinase (CSK) mutants, and 3) T cells from mice that contain a CSK transgene susceptible to chemical inhibition. Our results indicated that LAIR-1 engagement by collagen or by complement C1q (C1Q, which contains a collagen-like domain) inhibits TCR signaling by decreasing the phosphorylation of key components in the canonical T-cell signaling pathway, including LCK proto-oncogene SRC family tyrosine kinase (LCK), LYN proto-oncogene SRC family tyrosine kinase (LYN), ζ chain of T-cell receptor-associated protein kinase 70 (ZAP-70), and three mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun N-terminal kinase 1/2, and p38). The intracellular region of LAIR-1 contains two immunoreceptor tyrosine-based inhibition motifs that are both phosphorylated by LAIR-1 activation, and immunoprecipitation experiments revealed that Tyr-251 in LAIR-1 binds CSK. Using CRISPR/Cas9-mediated genome editing, we demonstrate that CSK is essential for the LAIR-1-induced inhibition of the human TCR signal transduction. T cells from mice that expressed a PP1 analog-sensitive form of CSK (CskAS) corroborated these findings, and we also found that Tyr-251 is critical for LAIR-1's inhibitory function. We propose that LAIR-1 activation may be a strategy for controlling inflammation and may offer a potential therapeutic approach for managing autoimmune diseases.


Subject(s)
Receptors, Immunologic/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , CSK Tyrosine-Protein Kinase/metabolism , Cattle , Collagen Type I/metabolism , Humans , Jurkat Cells , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Phosphotyrosine/metabolism , Proto-Oncogene Mas , ZAP-70 Protein-Tyrosine Kinase/metabolism
7.
PLoS One ; 14(12): e0226145, 2019.
Article in English | MEDLINE | ID: mdl-31809526

ABSTRACT

Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Carbazoles/administration & dosage , Collagen Type II/adverse effects , Synoviocytes/enzymology , TRPP Cation Channels/antagonists & inhibitors , Animals , Arthritis, Experimental/enzymology , Arthritis, Experimental/immunology , Carbazoles/pharmacology , Cells, Cultured , Humans , Mice , Receptors, Interleukin-1/metabolism , Synoviocytes/drug effects , Synoviocytes/immunology , Toll-Like Receptors/metabolism
8.
Int J Nanomedicine ; 14: 8835-8846, 2019.
Article in English | MEDLINE | ID: mdl-31806974

ABSTRACT

BACKGROUND: Inflammatory stress caused by protein kinase D (PKD) plays a critical role in damaging chondrocytes and extracellular matrix (ECM) during osteoarthritis (OA). The PKD inhibitor (PKDi) (CRT0066101) has been used to overcome inflammation in different cell types. However, the efficacy of a therapeutic drug can be limited due to off-target distribution, slow cellular internalization, and limited lysosomal escape. In order to overcome this issue, we developed nanosomes carrying CRT0066101 (PKDi-Nano) and tested their efficacy in vitro in chondrocytes. METHODS: Chondrocytes were subjected to IL-1ß-induced inflammatory stress treated with either PKDi or PKDi-Nano. Effects of treatment were measured in terms of cytotoxicity, cellular morphology, viability, apoptosis, phosphorylation of protein kinase B (Akt), and anabolic/catabolic gene expression analyses related to cartilage tissue. RESULTS AND DISCUSSION: The effects of PKDi-Nano treatment were more pronounced as compared to PKDi treatment. Cytotoxicity and apoptosis were significantly reduced following PKDi-Nano treatment (P < 0.001). Cellular morphology was also restored to normal size and shape. The viability of chondrocytes was significantly enhanced in PKDi-Nano-treated cells (P < 0.001). The data indicated that PKDi-Nano acted independently of the Akt pathway. Gene expression analyses revealed significant increases in the expression levels of anabolic genes with concomitant decreases in the level of catabolic genes. Our results indicate that PKDi-Nano attenuated the effects of IL-1ß via the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. CONCLUSION: Taken together, these results suggest that PKDi-Nano can be used as a successful strategy to reduce IL1ß-induced inflammatory stress in chondrocytes.


Subject(s)
Chondrocytes/drug effects , Nanostructures/administration & dosage , Protein Kinase C/antagonists & inhibitors , Pyrimidines/administration & dosage , Animals , Apoptosis/drug effects , Cells, Cultured , Chondrocytes/metabolism , Chondrocytes/pathology , Gene Expression Regulation/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/toxicity , NF-kappa B/metabolism , Nanostructures/chemistry , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Oxidative Stress/drug effects , Phosphorylation/drug effects , Protective Agents/administration & dosage , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Swine
9.
Cell Tissue Res ; 374(1): 111-120, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29951700

ABSTRACT

Survival of mesenchymal stem cells (MSCs) against oxidative stress and inflammation is vital for effective stem cell therapy. The reactive oxygen species (ROS) result in apoptosis and release of inflammatory mediators. Adipose-derived stem cells (ASCs) have shown promise for stem cell therapy owing to their anti-inflammatory and anti-oxidant activity. Previously, we showed the benefits of vitamin E against hydrogen peroxide (H2O2)-induced oxidative stress in rat bone marrow-derived MSCs. In this study, we aim to evaluate the effect of vitamin E treatment on porcine adipose-derived mesenchymal stem cells (pASCs) against H2O2-induced oxidative stress. The oxidative stress was induced by treating pASCs with 500 µM H2O2 with or without vitamin E. Viability of pASCs is enhanced after vitamin E treatment. In addition, reduced cellular toxicity, total NO level, PGE2 production and caspase-3 activity were observed after vitamin E treatment. Gene expression analysis of vitamin E-treated pASCs showed down-regulated expression for the genes associated with oxidative stress and apoptosis, viz., NOS2, Casp3, p53, BAX, MDM2, NFκB, HIF1α and VEGF-A genes. On the other hand, expression of anti-apoptotic and survival genes was up-regulated, viz., BCL2, BCL2L1 and MCL1. Furthermore, phosphorylation of Akt was attenuated following vitamin E treatment. The findings of this study may help in developing effective stem cell therapy for the diseases characterized by the oxidative stress and inflammation.


Subject(s)
Adipose Tissue/metabolism , Hydrogen Peroxide/adverse effects , Mesenchymal Stem Cells/metabolism , Oxidative Stress/drug effects , Vitamin E/therapeutic use , Animals , Disease Models, Animal , Swine , Vitamin E/pharmacology
10.
Clin Immunol ; 192: 50-57, 2018 07.
Article in English | MEDLINE | ID: mdl-29673901

ABSTRACT

The aim of this study was to understand how Syk affects peripheral T cell function. T cells from Syk-/- chimeric mice and DR1 Sykfl/fl CD4cre conditional mice gave strong CD3-induced Th1, Th2, and Th17 cytokine responses. However, an altered peptide ligand (APL) of human CII (256-276) with two substitutions (F263N, E266D), also called A12, elicited only Th2 cytokine responses from Sykfl/fl T cells but not Sykfl/fl-CD4cre T cells. Western blots revealed a marked increase in the phosphorylation of Syk, JNK and p38 upon A12/DR1 activation in WT or Sykfl/fl T cells but not in Sykfl/flCD4-cre cells. We demonstrate that Syk is required for the APL- induction of suppressive cytokines. Chemical Syk inhibitors blocked activation of GATA-3 by peptide A12/DR1. In conclusion, this study provides novel insights into the role that Syk plays in directing T cell activity, and may shape therapeutic approaches for autoimmune diseases.


Subject(s)
Lymphocyte Activation/immunology , Signal Transduction/immunology , Syk Kinase/immunology , T-Lymphocytes/immunology , Animals , Collagen Type II/genetics , Collagen Type II/immunology , Collagen Type II/metabolism , Cytokines/immunology , Cytokines/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Humans , Lymphocyte Activation/drug effects , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Peptides/immunology , Peptides/metabolism , Peptides/pharmacology , Phosphorylation , Protein-Tyrosine Kinases/pharmacology , Signal Transduction/drug effects , Stilbenes/pharmacology , Syk Kinase/antagonists & inhibitors , Syk Kinase/genetics , T-Lymphocytes/enzymology , T-Lymphocytes/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
11.
J Immunol ; 198(11): 4448-4457, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28461572

ABSTRACT

Group B streptococci (GBS) are one of the leading causes of life-threatening illness in neonates. Proinflammatory responses to GBS mediated through host innate immune receptors play a critical role in the disease manifestation. However, the mechanisms involved in proinflammatory responses against GBS, as well as the contribution of signaling modulators involved in host immune defense, have not been fully elucidated. In the present study, we investigated the role of protein kinase D (PKD)1 in the proinflammatory responses to GBS. We found that both live and antibiotic-killed GBS induce activation of PKD1 through a pathway that is dependent on the TLR signaling adaptor MyD88 and its downstream kinase IL-1R-associated kinase 1, but independent of TNFR-associated factor 6. Our studies using pharmacological PKD inhibitors and PKD1-knockdown macrophages revealed that PKD1 is indispensable for GBS-mediated activation of MAPKs and NF-κB and subsequent expression of proinflammatory mediators. Furthermore, systemic administration of a PKD inhibitor protects d-galactosamine-sensitized mice from shock-mediated death caused by antibiotic-killed GBS. These findings imply that PKD1 plays a critical regulatory role in GBS-induced proinflammatory reactions and sepsis, and inhibition of PKD1 activation together with antibiotic treatment in GBS-infected neonates could be an effective way to control GBS diseases.


Subject(s)
Inflammation/immunology , Protein Kinase C/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/metabolism , Streptococcus agalactiae/immunology , Animals , Humans , Infant, Newborn , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin 1 Receptor Antagonist Protein/metabolism , Macrophages/immunology , Macrophages/microbiology , Mice , Myeloid Differentiation Factor 88 , NF-kappa B/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/deficiency , Sepsis/microbiology , Signal Transduction , Tumor Necrosis Factor-alpha/biosynthesis
12.
J Immunol ; 197(12): 4569-4575, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27837109

ABSTRACT

Rheumatoid arthritis is an autoimmune disorder characterized by T cell dysregulation. We have shown that an altered peptide ligand (A9) activates T cells to use an alternate signaling pathway that is dependent on FcRγ and spleen tyrosine kinase, resulting in downregulation of inflammation. In the experiments described in this study, we have attempted to determine the molecular basis of this paradox. Three major Src family kinases found in T cells (Lck, Fyn, and Lyn) were tested for activation following stimulation by A9/I-Aq Unexpectedly we found they are not required for T cell functions induced by A9/I-Aq, nor are they required for APL stimulation of cytokines. On the other hand, the induction of the second messenger inositol trisphosphate and the mobilization of calcium are clearly triggered by the APL A9/I-Aq stimulation and are required for cytokine production, albeit the cytokines induced are different from those produced after activation of the canonical pathway. DBA/1 mice doubly deficient in IL-4 and IL-10 were used to confirm that these two cytokines are important for the APL-induced attenuation of arthritis. These studies provide a basis for exploring the effectiveness of analog peptides and the inhibitory T cells they induce as therapeutic tools for autoimmune arthritis.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Collagen Type II/metabolism , Peptide Fragments/metabolism , Receptors, IgG/metabolism , Syk Kinase/metabolism , T-Lymphocytes/immunology , Animals , Calcium Signaling , Collagen Type II/genetics , Collagen Type II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Interleukin-10/genetics , Interleukin-4/genetics , Lymphocyte Activation , Mice , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Peptide Fragments/genetics , Peptide Fragments/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, IgG/genetics , Second Messenger Systems
13.
Artif Organs ; 40(10): 1009-1013, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27183538

ABSTRACT

Diagnosis of cartilage damage in early stages of arthritis is vital to impede the progression of disease. In this regard, considerable progress has been made in near-infrared fluorescence (NIRF) optical imaging technique. Arthritis can develop due to various mechanisms but one of the main contributors is the production of matrix metalloproteinases (MMPs), enzymes that can degrade components of the extracellular matrix. Especially, MMP-1 and MMP-13 have main roles in rheumatoid arthritis and osteoarthritis because they enhance collagen degradation in the process of arthritis. We present here a novel NIRF imaging strategy that can be used to determine the activity of MMPs and cartilage damage simultaneously by detection of exposed type II collagen in cartilage tissue. In this study, retro-orbital injection of mixed fluorescent dyes, MMPSense 750 FAST (MMP750) dye and Alexa Fluor 680 conjugated monoclonal mouse antibody immune-reactive to type II collagen, was administered in the arthritic mice. Both dyes were detected with different intensity according to degree of joint destruction in the animal. Thus, our dual fluorescence imaging method can be used to detect cartilage damage as well as MMP activity simultaneously in early stage arthritis.


Subject(s)
Arthritis, Rheumatoid/diagnostic imaging , Cartilage/diagnostic imaging , Collagen Type II/analysis , Joints/diagnostic imaging , Matrix Metalloproteinases/analysis , Optical Imaging/methods , Animals , Fluorescence , Mice, Transgenic
14.
Biomed Opt Express ; 7(5): 1842-52, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27231625

ABSTRACT

Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models.

15.
Clin Immunol ; 160(2): 188-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25982319

ABSTRACT

Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-A(q) using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokines and attenuation of arthritis.


Subject(s)
Arthritis, Experimental/immunology , Cytokines/immunology , Histocompatibility Antigens Class II/immunology , Peptide Fragments/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Animals , Collagen Type II/immunology , Ligands , Mice , Peptide Fragments/immunology , Peptides/immunology , Peptides/metabolism , Protein Binding , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Signal Transduction/immunology
16.
J Steroid Biochem Mol Biol ; 144 Pt A: 28-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24176765

ABSTRACT

Research over the last decade has revealed that CYP11A1 can hydroxylate the side chain of vitamin D3 at carbons 17, 20, 22 and 23 to produce at least 10 metabolites, with 20(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3, 17,20(OH)2D3 and 17,20,23(OH)3D3 being the main products. However, CYP11A1 does not act on 25(OH)D3. The placenta, adrenal glands and epidermal keratinocytes have been shown to metabolize vitamin D3 via this CYP11A1-mediated pathway that is modified by the activity of CYP27B1, with 20(OH)D3 (the major metabolite), 20,23(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3 and 17,20,23(OH)3D3 being detected, defining these secosteroids as endogenous regulators/natural products. This is supported by the detection of a mono-hydroxyvitamin D3 with the retention time of 20(OH)D3 in human serum. In new work presented here we demonstrate that the CYP11A1-initiated pathways also occurs in Caco-2 colon cells. Our previous studies show that 20(OH)D3 and 20,23(OH)2D3 are non-calcemic at pharmacological doses, dependent in part on their lack of a C1α hydroxyl group. In epidermal keratinocytes, 20(OH)D3, 20(OH)D2 and 20,23(OH)2D3 inhibited cell proliferation, stimulated differentiation and inhibited NF-κB activity with potencies comparable to 1,25(OH)2D3, acting as partial agonists on the VDR. 22(OH)D3 and 20,22(OH)2D3, as well as secosteroids with a short or no side chain, showed antiproliferative and prodifferentiation effects, however, with lower potency than 20(OH)D3 and 20,23(OH)2D3. The CYP11A1-derived secosteroids also inhibited melanocyte proliferation while having no effect on melanogenesis, and showed anti-melanoma activities in terms of inhibiting proliferation and the ability to grow in soft agar. Furthermore, 20(OH)D3 and 20,23(OH)2D3 showed anti-fibrosing effects in vitro, and also in vivo for the former. New data presented here shows that 20(OH)D3 inhibits LPS-induced production of TNFα in the J774 line, TNFα and IL-6 in peritoneal macrophages and suppresses the production of proinflammatory Th1/Th17-related cytokines, while promoting the production of the anti-inflammatory cytokine IL-10 in vivo. In summary, CYP11A1 initiates new pathways of vitamin D metabolism in a range of tissues and products could have important physiological roles at the local or systemic level. In the skin, CYP11A1-derived secosteroids could serve both as endogenous regulators of skin functions and as excellent candidates for treatment of hyperproliferative and inflammatory skin disorders, and skin cancer. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme/metabolism , Epidermis/metabolism , Secosteroids/chemistry , Vitamin D/metabolism , Vitamins/metabolism , Animals , Epidermis/drug effects , Humans , Secosteroids/pharmacology
17.
PLoS One ; 8(8): e73143, 2013.
Article in English | MEDLINE | ID: mdl-24023674

ABSTRACT

Hypersensitivity pneumonitis (HP) is an interstitial lung disease that develops following repeated exposure to environmental antigens. The disease results in alveolitis, granuloma formation and may progress to a fibrotic chronic form, which is associated with significant morbidity and mortality. The severity of the disease correlates with a neutrophil rich influx and an IL-17 response. We used the Saccharopolysporarectivirgula (SR) model of HP to determine whether Toll-like receptors (TLR) 2 and 9 cooperate in neutrophil recruitment and IL-17-associated cytokine production during the development of HP. Stimulation of bone marrow derived macrophages (BMDMs) from C57BL/6, MyD88(-/-) and TLR2/9(-/-) mice with SR demonstrate that SR is a strong inducer of neutrophil chemokines and growth factors. The cytokines induced by SR were MyD88-dependent and, of those, most were partially or completely dependent on TLRs 2 and 9. Following in vivo exposure to SR, CXCL2 production and neutrophil recruitment were reduced in TLR2(-/-) and TLR2/9(-/-) mice suggesting that the response was largely dependent on TLR2; however the reduction was greatest in the TLR2/9(-/-) double knockout mice indicating TLR9 may also contribute to the response. There was a reduction in the levels of pro-inflammatory cytokines TNFα and IL-6 as well as CCL3 and CCL4 in the BALF from TLR2/9(-/-) mice compared to WT and single knockout (SKO) mice exposed one time to SR. The decrease in neutrophil recruitment and TNFα production in the TLR2/9(-/-) mice was maintained throughout 3 weeks of SR exposures in comparison to WT and SKO mice. Both TLRs 2 and 9 contributed to the Th17 response; there was a decrease in Th17 cells and IL-17 mRNA in the TLR2/9(-/-) mice in comparison to the WT and SKO mice. Despite the effects on neutrophil recruitment and the IL-17 response, TLR2/9(-/-) mice developed granuloma formation similarly to WT and SKO mice suggesting that there are additional mediators and pattern recognition receptors involved in the disease.


Subject(s)
Alveolitis, Extrinsic Allergic/immunology , Cytokines/biosynthesis , Neutrophil Infiltration/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 9/metabolism , Alveolitis, Extrinsic Allergic/complications , Alveolitis, Extrinsic Allergic/microbiology , Alveolitis, Extrinsic Allergic/pathology , Animals , Chemokines/biosynthesis , Female , Granuloma/complications , Granuloma/pathology , Inflammation/complications , Inflammation/pathology , Lung/immunology , Lung/microbiology , Lung/pathology , Lymphocytes/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mutation/genetics , Saccharopolyspora/physiology , Th1 Cells/immunology , Th17 Cells/immunology , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 9/deficiency
18.
PLoS One ; 7(8): e43970, 2012.
Article in English | MEDLINE | ID: mdl-22928050

ABSTRACT

As a part of the negative feedback mechanism, CpG DNA induces IRAK-M expression in monocytic cells. In the present study we investigated a biochemical signaling pathway and the transcription factors responsible for CpG DNA-mediated Irak-m gene expression. CpG DNA-induced Irak-m expression did not require new protein synthesis and was regulated at the transcriptional level through an endosomal pH-sensitive TLR9/MyD88 signaling pathway. Over-expression of the dominant negative (DN) form of or gene-specific knockdown of signaling modulators in the TLR9 pathway demonstrated that IRAK4, IRAK1, IRAK2, and PKD1 are required for Irak-m transcription induced by CpG DNA. Over-expression of DN-IRAK1 only partially, but significantly, inhibited CpG DNA-induced Irak-m promoter activity. While IRAK1 was critical for the initial phase, IRAK2 was required for the late phase of TLR9 signaling by sustaining activation of PKD1 that leads to activation of NF-κB and MAPKs. Irak-m promoter-luciferase reporters with alterations in the predicted cis-acting transcriptional regulatory elements revealed that the NF-κB consensus site in the Irak-m promoter region is absolutely required for Irak-m gene expression. AP-1 and CREB binding sites also contributed to the optimal Irak-m expression by CpG DNA. Collectively, our results demonstrate that IRAK2 plays a key role in the TLR9-mediated transcriptional regulation of Irak-m expression by sustaining activation of PKD1 and NF-κB.


Subject(s)
CpG Islands , DNA/genetics , Gene Expression Regulation/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Monocytes/metabolism , Protein Kinase C/metabolism , Animals , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Ligands , Mice , Mitogen-Activated Protein Kinases/metabolism , Monocytes/cytology , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Signal Transduction , Toll-Like Receptor 9/metabolism , Transcription Factor AP-1/metabolism , Transcription, Genetic
19.
Cell Physiol Biochem ; 29(5-6): 725-36, 2012.
Article in English | MEDLINE | ID: mdl-22613973

ABSTRACT

Allergic and inflammatory responses are functionally linked through a cascade of signaling events that connect the aggregation of the high affinity IgE receptor (FcεRI) on mast cells and the initiation of cyclooxygenase-2 (COX-2) expression. In this study, we identified the cis-acting elements in the cox-2 promoter that control the expression of COX-2 in RBL-2H3 mast cells. We also investigated how the inflammatory reaction is controlled by the allergic reaction by determining the signaling components employed by FcεRI in the transcriptional regulation of cox-2. Among cis-acting components present in the cox-2 promoter, the CREB binding site, as well as the AP-1 and proximal NF-IL6 binding sites to a lesser extent, were required for the transcriptional regulation of the cox-2 promoter. However, NF-κB and Ets-1 binding sites exerted negative effects on the cox-2 promoter activity. Among the signaling components of FcεRI, Fyn, PI 3-kinase, Akt, and p38 MAPK positively mediated the COX-2 expression. Conventional PKCs and atypical PKCs exerted opposite regulatory effects on the cox-2 promoter activity. Blockade of MEK/ERK pathway inhibited the cox-2 promoter activity and the COX-2 expression. These results reveal intricate functional interactions among different cis-acting elements in the transcriptional regulation of cox-2. Fyn-->PI 3-kinase-->Akt pathway directly stimulate. On the other hand, Lyn-->Syk pathway exerts auxiliary or compensatory influences on COX-2 expression via PKC and MEK/ERK.


Subject(s)
Cyclooxygenase 2/metabolism , Gene Expression Regulation, Enzymologic , Receptors, IgE/metabolism , Signal Transduction , Allergens/pharmacology , Animals , Binding Sites , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation, Enzymologic/drug effects , MAP Kinase Signaling System , Mutation , NF-kappa B/metabolism , Promoter Regions, Genetic , Rats , Transcription Factor AP-1/metabolism , Transcription, Genetic
20.
J Biol Chem ; 287(23): 19765-74, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22511761

ABSTRACT

Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy.


Subject(s)
Arthritis, Experimental/immunology , Collagen Type II/immunology , Histocompatibility Antigens Class II/immunology , Peptides/immunology , T-Lymphocytes/immunology , Animals , Arthritis, Experimental/pathology , Arthritis, Experimental/therapy , CD3 Complex/genetics , Collagen Type II/pharmacology , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Mice , Mice, Knockout , Peptides/pharmacology , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/immunology , Receptors, Fc/genetics , Receptors, Fc/immunology , Syk Kinase , T-Lymphocytes/pathology , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...