Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Adv Mater ; : e2406532, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056142

ABSTRACT

The interface between the perovskite layer and electron transporting layer is a critical determinate for the performance and stability of perovskite solar cells (PSCs). The heterogeneity of the interface critically affects the carrier dynamics at the buried interface. To address this, a bridging molecule, (2-aminoethyl)phosphonic acid (AEP), is introduced for the modification of SnO2/perovskite buried interface in n-i-p structure PSCs. The phosphonic acid group strongly bonds to the SnO2 surface, effectively suppressing the surface carrier traps and leakage current, and uniforming the surface potential. Meanwhile, the amino group influences the growth of perovskite film, resulting in higher crystallinity, phase purity, and fewer defects. Furthermore, the bridging molecules facilitate the charge extraction at the interface, as indicated by the femtosecond transient reflection (fs-TR) spectroscopy, leading to champion power conversion efficiency (PCE) of 26.40% (certified 25.98%) for PSCs. Additionally, the strengthened interface enables improved operational durability of ≈1400 h for the unencapsulated PSCs under ISOS-L-1I protocol.

2.
J Am Chem Soc ; 146(17): 11978-11990, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626322

ABSTRACT

Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.

3.
Adv Mater ; 36(25): e2313673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503278

ABSTRACT

Organic-inorganic hybrid perovskites have emerged as highly promising candidates for photovoltaic applications, owing to the exceptional optoelectronic properties and low cost. Nonetheless, the performance and stability of solar cells suffer from the defect states of perovskite films aroused by non-optically active phases and non-centralized crystal orientation. Herein, a versatile organic molecule, Hydantoin, to modulate the crystallization of perovskite, is developed. Benefiting from the diverse functional groups, more spatially oriented perovskite films with high crystallinity are formed. This enhancement is accompanied by a conspicuous reduction in defect density, yielding efficiency of 25.66% (certified 25.15%), with superb environmental stability. Notably, under the standard measurement conditions (ISOS-L-1I), the maximum power point (MPP) output maintains 96.8% of the initial efficiency for 1600 h and exhibits excellent ion migration suppression. The synergistic regulation of crystallization and spatial orientation offers novel avenues for propelling perovskite solar cell (PSC) development.

4.
Nanomicro Lett ; 15(1): 164, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386337

ABSTRACT

With the rapid rise in perovskite solar cells (PSCs) performance, it is imperative to develop scalable fabrication techniques to accelerate potential commercialization. However, the power conversion efficiencies (PCEs) of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones. Herein, the additive methylammonium chloride (MACl) is introduced to modulate the crystallization and orientation of a two-step sequential doctor-bladed perovskite film in ambient conditions. MACl can significantly improve perovskite film quality and increase grain size and crystallinity, thus decreasing trap density and suppressing nonradiative recombination. Meanwhile, MACl also promotes the preferred face-up orientation of the (100) plane of perovskite film, which is more conducive to the transport and collection of carriers, thereby significantly improving the fill factor. As a result, a champion PCE of 23.14% and excellent long-term stability are achieved for PSCs based on the structure of ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag. The superior PCEs of 21.20% and 17.54% are achieved for 1.03 cm2 PSC and 10.93 cm2 mini-module, respectively. These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.

5.
Small ; 19(24): e2300374, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36919329

ABSTRACT

Perovskite solar cells (PSCs) have emerged as one of the most promising and competitive photovoltaic technologies, and doctor-blading is a facile and robust deposition technique to efficiently fabricate PSCs in large scale, especially matching with roll-to-roll process. Herein, it demonstrates the encouraging results of one-step, antisolvent-free doctor-bladed methylammonium lead iodide (CH3 NH3 PbI3, MAPbI3 ) PSCs under a wide range of humidity from 45% to 82%. A synergy strategy of ionic-liquid methylammonium acetate (MAAc) and molecular phenylurea additives is developed to modulate the morphology and crystallization process of MAPbI3 perovskite film, leading to high-quality MAPbI3 perovskite film with large-size crystal, low defect density, and ultrasmooth surface. Impressive power conversion efficiency (PCE) of 20.34% is achieved for doctor-bladed PSCs under the humidity over 80% with a device structure of ITO/SnO2 /MAPbI3 /Spiro-OMeTAD/Ag. It is the highest PCEs for one-step solution-processed MAPbI3 PSCs without antisolvent assistance. The research provides a facile and robust large-scale deposition technique to fabricate highly efficient and stable PSCs under a wide range of humidity, even with the humidity over 80%.

7.
Angew Chem Int Ed Engl ; 62(15): e202300314, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36788422

ABSTRACT

Hole transport materials (HTMs) with high hole mobility, good band alignment and ease of fabrication are highly desirable for perovskite solar cells (PSCs). Here, we designed and synthesized novel organic HTMs, named T3, which can be synthesized in high yields with commercially available materials, featuring a substituted pyrrole core and triphenylamine peripheral arms. The capability of functionalization in the final synthetic step provides an efficient way to obtain a variety of T3-based HTMs with tunable energy levels and other properties. Among them, fluorine-substituted T3 (T3-F) exhibits the best band alignment and hole extraction properties, leading to PSCs with outstanding PCEs of 24.85 % and 24.03 % (certified 23.46 %) for aperture areas of 0.1 and 1 cm2 , respectively. The simple structure and tunable performance of T3 can inspire further optimization for efficient PSCs.

8.
Adv Mater ; 35(13): e2205027, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36681866

ABSTRACT

Organic-inorganic hybrid perovskites exhibit outstanding performances in perovskite solar cells (PSCs). However, the complex solution chemistry of perovskites precursors renders it difficult to prepare large-area devices in a reproducible way, which is a prerequisite for the technology to make an impact beyond lab scale. Vacuum processing, instead, is an established technology for large-scale coating of thin films. However, with respect to the hybrid perovskites it is highly challenging due to the high vapor pressure of the organic ammonium halide. In this work, vacuum evaporation of lead iodide and solution processing of organic ammonium halide is combined to produce large-area homogeneous perovskite films with large grains in a highly reproducible way. The resulting PSCs achieve a power conversion efficiency (PCE) of 24.3% (certified 23.9%) on small area (0.10 cm2 ), 24.0% (certified 23.7%) on large area (1 cm2 ) and 20.0% for minimodule (16 cm2 ), and maintain 90% of its initial efficiency after 1000 h 1-sun operation. The vacuum evaporation prevents advert environmental effects on lead halide formation and guarantees a reproducible fabrication of high-quality large-area perovskite films, which opens a promising way for large-scale fabrication of perovskite optoelectronics.

9.
Nanomicro Lett ; 15(1): 23, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36580117

ABSTRACT

After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.

10.
Nanomicro Lett ; 15(1): 12, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36512180

ABSTRACT

Perovskite solar cells (PSCs) have become the representatives of next generation of photovoltaics; nevertheless, their stability is insufficient for large scale deployment, particularly the reverse bias stability. Here, we propose a transparent conducting oxide (TCO) and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency. The TCO can block ion migrations and chemical reactions between the metal and perovskite, while the metal greatly enhances the conductivity of the composite electrode. As a result, composite electrode-PSCs achieved a power conversion efficiency (PCE) of 23.7% (certified 23.2%) and exhibited excellent stability, maintaining 95% of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92% of the initial PCE after 1000 h continuous light soaking. This composite electrode strategy can be extended to different combinations of TCOs and metals. It opens a new avenue for improving the stability of PSCs.

11.
Innovation (Camb) ; 3(6): 100310, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36160942

ABSTRACT

Flexible perovskite solar cells (FPSCs) have emerged as power sources in versatile applications owing to their high-efficiency characteristics, excellent flexibility, and relatively low cost. Nevertheless, undesired strain in perovskite films greatly impacts the power-conversion efficiency (PCE) and stability of PSCs, particularly in FPSCs. Herein, a novel multifunctional organic salt, methylammonium succinate, which can alleviate strain and reinforce grain boundaries, was incorporated into the perovskite film, leading to relaxed microstrain and a lower defect concentration. As a result, a PCE of 25.4% for rigid PSCs and a record PCE of 23.6% (certified 22.5%) for FPSCs have been achieved. In addition, the corresponding FPSCs exhibited excellent bending durability, maintaining ∼85% of their initial efficiency after bending at a 6 mm radius for 10 000 cycles.

12.
ACS Appl Mater Interfaces ; 14(38): 43917-43925, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36107732

ABSTRACT

Lithium metal batteries have become potential high-energy storage devices because lithium metal has excellent theoretical capacity and low reduction potential. Unfortunately, the reckless growth of lithium dendrites leads to the decrease in Coulombic efficiency and the attenuation of cycle performance. Herein, we propose a collaborative assembly approach for a fluorine-enriched heterostructured solid electrolyte interphase (SEI) on lithium metal to enable stable and ultralong-life lithium metal batteries. The fluorine-enriched heterostructured SEI consists of an artificial precursor substrate K2ZrF6 and an epigenetically assembled LiF layer, and the composite structure cooperatively realizes the rapid conduction of Li+ ions and inhibits the formation of lithium dendrites. Benefiting from the heterostructured SEI, the symmetric cell exhibits an ultralong-time stable cycle of more than 7000 h at a high current and capacity density (4 mA cm-2 and 4 mA h cm-2, respectively), much longer than that of the lithium cell. Besides, the LiFePO4 full battery (LFP||Li-Zr) enables substantially enhanced cyclability over 800 cycles at 1 C. This work paves the way for dendrite-free and long-life lithium metal batteries with well-balanced heterostructured SEI engineering.

13.
Sci Adv ; 8(28): eabo7422, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35857518

ABSTRACT

Vacuum evaporation is promising for the high-throughput fabrication of perovskite solar cells (PSCs) because of its solvent-free characteristic, precise control of film thickness, and compatibility with large-scale production. Nevertheless, the power conversion efficiency (PCE) of PSCs fabricated by vacuum evaporation lags behind that of solution-processed PSCs. Here, we report a Cl-containing alloy-mediated sequential vacuum evaporation approach to fabricate perovskite films. The presence of Cl in the alloy facilitates organic ammonium halide diffusion and the subsequent perovskite conversion reaction, leading to homogeneous pinhole-free perovskite films with few defects. The resulting PSCs yield a PCE of 24.42%, 23.44% (certified 22.6%), and 19.87% for 0.1, 1.0, and 14.4 square centimeters (mini-module, aperture area), respectively. The unencapsulated PSCs show good stability with negligible decline in performance after storage in dry air for more than 4000 hours. Our method provides a reproducible approach for scalable fabrication of large-area, high-efficiency PSCs and other perovskite-based optoelectronics.

14.
Angew Chem Int Ed Engl ; 61(38): e202207762, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35880625

ABSTRACT

Manipulating the backbone of small molecule acceptors (SMAs) is of particular importance in developing efficient organic solar cells (OSCs). The common design is constructing 2-arm SMAs with linear or curved backbones. Herein, we report an acceptor 4A-DFIC with a 4-arm backbone unexpectedly generated in the reaction of an electron-rich aromatic diamine and hexaketocyclohexane. Single-crystal X-ray diffraction analysis indicates the rigid and twisted molecular plane and the effective molecular stacking of 4A-DFIC in solid state. 4A-DFIC shows a low band gap of 1.40 eV and excellent light-harvesting capability from visible to near-infrared region. Binary and ternary OSCs based on 4A-DFIC gave power conversion efficiencies (PCEs) of 15.76 % and 18.60 % (certified 18.1 %), respectively, which are the highest PCEs for multi-arm SMA-based OSCs to date.

15.
Adv Mater ; 32(21): e2000865, 2020 May.
Article in English | MEDLINE | ID: mdl-32285563

ABSTRACT

Excess lead iodide (PbI2 ), as a defect passivation material in perovskite films, contributes to the longer carrier lifetime and reduced halide vacancies for high-efficiency perovskite solar cells. However, the random distribution of excess PbI2 also leads to accelerated degradation of the perovskite layer. Inspired by nanocrystal synthesis, here, a universal ligand-modulation technology is developed to modulate the shape and distribution of excess PbI2 in perovskite films. By adding certain ligands, perovskite films with vertically distributed PbI2 nanosheets between the grain boundaries are successfully achieved, which reduces the nonradiative recombination and trap density of the perovskite layer. Thus, the power conversion efficiency of the modulated device increases from 20% to 22% compared to the control device. In addition, benefiting from the vertical distribution of excess PbI2 and the hydrophobic nature of the surface ligands, the modulated devices exhibit much longer stability, retaining 72% of their initial efficiency after 360 h constant illumination under maximum power point tracking measurement.

18.
ChemSusChem ; 10(11): 2449-2456, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28371520

ABSTRACT

Photoelectrochemical (PEC) cells are attractive for storing solar energy in chemical bonds through cleaving of water into oxygen and hydrogen. Although hematite (α-Fe2 O3 ) is a promising photoanode material owing to its chemical stability, suitable band gap, low cost, and environmental friendliness, its performance is limited by short carrier lifetimes, poor conductivity, and sluggish kinetics leading to low (solar-to-hydrogen) STH efficiency. Herein, we combine solution-based hydrothermal growth and a post-growth surface exposure through atomic layer deposition (ALD) to show a dramatic enhancement of the efficiency for water photolysis. These modified photoanodes show a high photocurrent of 3.12 mA cm-2 at 1.23 V versus RHE, (>5 times higher than Fe2 O3 ) and a plateau photocurrent of 4.5 mA cm-2 at 1.5 V versus RHE. We demonstrate that these photoanodes in tandem with a CH3 NH3 PbI3 perovskite solar cell achieves overall unassisted water splitting with an STH conversion efficiency of 3.4 %, constituting a new benchmark for hematite-based tandem systems.


Subject(s)
Ferric Compounds/chemistry , Photolysis , Solar Energy , Water/chemistry , Calcium Compounds , Electrochemistry/methods , Oxides , Titanium
19.
Adv Mater ; 29(17)2017 May.
Article in English | MEDLINE | ID: mdl-28240401

ABSTRACT

A fullerene derivative (α-bis-PCBM) is purified from an as-produced bis-phenyl-C61 -butyric acid methyl ester (bis-[60]PCBM) isomer mixture by preparative peak-recycling, high-performance liquid chromatography, and is employed as a templating agent for solution processing of metal halide perovskite films via an antisolvent method. The resulting α-bis-PCBM-containing perovskite solar cells achieve better stability, efficiency, and reproducibility when compared with analogous cells containing PCBM. α-bis-PCBM fills the vacancies and grain boundaries of the perovskite film, enhancing the crystallization of perovskites and addressing the issue of slow electron extraction. In addition, α-bis-PCBM resists the ingression of moisture and passivates voids or pinholes generated in the hole-transporting layer. As a result, a power conversion efficiency (PCE) of 20.8% is obtained, compared with 19.9% by PCBM, and is accompanied by excellent stability under heat and simulated sunlight. The PCE of unsealed devices dropped by less than 10% in ambient air (40% RH) after 44 d at 65 °C, and by 4% after 600 h under continuous full-sun illumination and maximum power point tracking, respectively.

20.
ChemSusChem ; 9(18): 2578-2585, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27560603

ABSTRACT

Three novel hole-transporting materials (HTMs) using the 4-methoxytriphenylamine (MeOTPA) core were designed and synthesized. The energy levels of the HTMs were tuned to match the perovskite energy levels by introducing symmetrical electron-donating groups linked with olefinic bonds as the π bridge. The methylammonium lead triiodide (MAPbI3 ) perovskite solar cells based on the new HTM Z34 (see main text for structure) exhibited a remarkable overall power conversion efficiency (PCE) of 16.1 % without any dopants or additives, which is comparable to 16.7 % obtained by a p-doped 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD)-based device fabricated under the same conditions. Importantly, the devices based on the three new HTMs show relatively improved stability compared to devices based on spiro-OMeTAD when aged under ambient air containing 30 % relative humidity in the dark.


Subject(s)
Calcium Compounds/chemistry , Electric Power Supplies , Electrons , Oxides/chemistry , Solar Energy , Titanium/chemistry , Drug Stability
SELECTION OF CITATIONS
SEARCH DETAIL