Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 47(4): 2583-2589, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32124170

ABSTRACT

Stable inheritance and expression of transgene are important parameters for successful use of a transgenic crop. We previously transformed a Bt cry1Ba3 gene into cabbage inbred line CA21-3. To evaluate the stability of our Bt cabbage lineages, transgene inheritance and expression were examined in four successive generations under greenhouse conditions. In our study, T1, T2 and T3 progenies of the three independent transgenic lineages (YA-1, YA-2 and YA-3) were generated and then the inheritance and expression of cry1Ba3 were analyzed in sexually derived progeny. Segregation ratio of 2.81:1, 3.27:1 and 3.07:1 was found in T1 progeny of lineages YA-1, YA-2 and YA-3, respectively. Chi-square analysis indicated that these segregation ratios of corresponding population fit the 3:1 ratio. Segregation ratios of the transgene in T2 progeny showed either 3:1 or all expression of cry1Ba3. These data suggest that cry1Ba3 in CA21-3 can be inherited in a Mendelian manner. ELISA analysis of transgenic plants from four generations demonstrated that cry1Ba3 had been stably transmitted to the T3 progeny. Additionally, under artificial infestation conditions, the homozygous T3-YA-1-2-1 line exhibited excellent resistance to Plutella xylostella as compared with un-transformed CA21-3. All these results imply that the three cabbage lineages are genetically stable and can be used to inhibit damage on cabbage caused by P. xylostella.


Subject(s)
Bacillus thuringiensis/genetics , Brassica/genetics , Plants, Genetically Modified/genetics , Bacterial Proteins/genetics , Disease Resistance/genetics , Inheritance Patterns/genetics , Plant Diseases/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL