Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 716
Filter
1.
World J Gastrointest Oncol ; 16(7): 2867-2876, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072175

ABSTRACT

Hepatocellular carcinoma (HCC) is a systemic disease with augmented malignant degree, high mortality and poor prognosis. Since the establishment of the immune mechanism of tumor therapy, people have realized that immunotherapy is an effective means for improvement of HCC patient prognosis. Oncolytic virus is a novel immunotherapy drug, which kills tumor cells and exempts normal cells by directly lysing tumor and inducing anti-tumor immune response, and it has been extensively examined as an HCC therapy. This editorial discusses oncolytic viruses for the treatment of HCC, emphasizing viral immunotherapy strategies and clinical applications related to HCC.

3.
Heliyon ; 10(12): e32516, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994101

ABSTRACT

Background: Many patients with atrial fibrillation (AF) discontinued oral anticoagulation (OAC) therapy after successful catheter ablation. We aimed to determine the real-world risks and consequences of discontinuing OAC use after catheter ablation for AF. Methods: Patients who underwent successful catheter ablation for AF from January 2004 to December 2020 were divided into continued long-term OAC (On-OAC, n = 1062) and discontinued (Off-OAC, n = 1055) groups. The long-term outcomes including thromboembolic events, major bleeding, all-cause mortality and major adverse cardiovascular events (MACE), were compared between the two groups. Results: The CHA2DS2-VASc score was 3.44 ± 1.12. After a mean follow-up of 37.09 months, thromboembolism risk was higher and major bleeding risk was lower in the Off-OAC than in the On-OAC group (Both log-rank P < 0.001). CHA2DS2-VASc score-stratified subgroup analysis showed similar cumulative event rates between the two groups in men and women with scores of 2 and 3 (intermediate risk for stroke), respectively, (P > 0.05), except for a higher major bleeding rate in the On-OAC group (P = 0.002). Patients at high risk for stroke (men and women with scores ≥3 and ≥ 4) had better non-thromboembolic and non-MACE results (Both log-rank P < 0.05). Conclusion: Men with a CHA2DS2-VASc score of 2 and women with a score of 3 had a relatively low incidence of stroke events after successful catheter ablation for AF and may be safe for anticoagulation cessation. Greater benefits from long-term OAC were observed in men with CHA2DS2-VASc score ≥3 and women with score ≥4.

4.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3002-3011, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041160

ABSTRACT

This study aims to observe the effects of the traditional Chinese medicine prescription Dahuang Zhechong Pills(DHZCP on renal aging and explore its potential multi-target effects. Rats were assigned into the normal, model, DHZCP, and vitamin E(VE)groups. Firstly, the rat model of D-galactose(D-gal)-induced renal aging was established. During the modeling period, the rats in the 4 groups were administrated with double distilled water, double distilled water, DHZCP suspension, and VE suspension, respectively,by gavage every day. On day 60 of intervention, the indicators of renal aging and injury in rats were measured, including the function,histopathological characteristics, senescence-associated ß-galactosidase( SA-ß-gal) staining, and expression levels of Klotho and proteins associated with cell cycle arrest and senescence-associated secretory phenotype(SASP) in the renal tissue. Moreover, nontargeted metabolomic analysis of the renal tissue was performed for the 4 groups of rats to screen out the potential biomarkers and metabolic pathways. Finally, the signaling pathways of key targets were preliminarily validated. The results showed that DHZCP and VE significantly improved the renal function, histopathological features of renal tubular/interstitial tissue, and degree of SA-ß-gal staining, up-regulated the expression level of Klotho, and down-regulated the expression levels of proteins associated with cell cycle arrest and SASP in the renal tissue of the aging rats. In addition, DHZCP and VE regulated the metabolites in the renal tissue of the aging rats. There were 21 common differential metabolites. Among them, 5 differential metabolites were significantly increased in the aging rats and recovered after DHZCP or VE treatment, and they were involved in the lipid metabolism and energy metabolism pathways. The areas under the curves of the groups in comparison varied within the range of 0. 88-1. DHZCP regulated multiple signaling pathways, such as the adenosine monophosphate-activated protein kinase(AMPK), cyclic guanosine monophosphate-protein kinase G( c GMP-PKG), cyclic adenylic acid( c AMP), phosphatidylinositol-3-kinase-protein kinase B( PI3K-Akt), mammalian target of rapamycin(mTOR), and autophagy signaling pathways. In addition, it affected the multiple metabolic pathways, such as renin secretion, longevity regulation pathway, diabetic cardiomyopathy, and niacin and nicotinamide metabolism. DHZCP and VE significantly up-regulated the expression level of the key proteins in the AMPK signaling pathway in the renal tissue of the aging rats. In all, DHZCP and VE could mitigate renal aging and injury. DHZCP exerted multi-target effects via multiple signaling pathways and metabolic pathways in the kidney, in which the AMPK signaling pathway may be one of the key targets for action.


Subject(s)
Aging , Drugs, Chinese Herbal , Kidney , Metabolomics , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Rats , Kidney/drug effects , Kidney/metabolism , Aging/drug effects , Aging/metabolism , Male , Signal Transduction/drug effects
5.
World J Gastroenterol ; 30(23): 2959-2963, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946873

ABSTRACT

In this editorial, we comment on the article entitled "Stage at diagnosis of colorectal cancer through diagnostic route: Who should be screened?" by Agatsuma et al. Colorectal cancer (CRC) is emerging as an important health issue as its incidence continues to rise globally, adversely affecting the quality of life. Although the public has become more aware of CRC prevention, most patients lack screening awareness. Some poor lifestyle practices can lead to CRC and symptoms can appear in the early stages of CRC. However, due to the lack of awareness of the disease, most of the CRC patients are diagnosed already at an advanced stage and have a poor prognosis.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/epidemiology , Early Detection of Cancer/methods , Quality of Life , Neoplasm Staging , Mass Screening/methods , Mass Screening/standards , Prognosis , Colonoscopy , Incidence , Health Knowledge, Attitudes, Practice , Life Style
6.
Nucleic Acids Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967018

ABSTRACT

The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.

7.
World J Clin Oncol ; 15(5): 603-613, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38835843

ABSTRACT

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.

8.
Adv Sci (Weinh) ; : e2402565, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894600

ABSTRACT

Light-harvesting is of vital importance for many events, such as photosynthesis. To efficiently gather and transfer solar energy, delicate antenna is needed, which has been achieved by algae and plants. However, construction of efficient light-harvesting systems using multiple, artificial building blocks is still challenging. Here, blue-emitting organosilicone capsules containing carbon dots (denoted as CDs-Si) in ethanol are prepared, which can effectively transfer energy to green-emitting (silicone-functionalized bodipy, Si-BODIPY) or red-emitting (rhodamine b, RhB) dyes. In ternary system, sequential Förster resonance energy transfer from CDs-Si to Si-BODIPY and further to RhB is realized, which is accompanied with a less pronounced, parallel FRET directly from CDs-Si to RhB. The overall efficiency of energy transfer reaches ≈86%. By introducing a photoswitch (1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene, DAE) to the system, the emission becomes switchable under alternative illumination with UV and visible light, leading to the formation of smart artificial light-harvesting systems.

9.
10.
Inorg Chem ; 63(21): 9720-9725, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38757704

ABSTRACT

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

11.
Plant Sci ; 344: 112109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704094

ABSTRACT

Advances in next-generation sequencing (NGS) have significantly reduced the cost and improved the efficiency of obtaining single nucleotide polymorphism (SNP) markers, particularly through restriction site-associated DNA sequencing (RAD-seq). Meanwhile, the progression in whole genome sequencing has led to the utilization of an increasing number of reference genomes in SNP calling processes. This study utilized RAD-seq data from 242 individuals of Engelhardia roxburghiana, a tropical tree of the walnut family (Juglandaceae), with SNP calling conducted using the STACKS pipeline. We aimed to compare both reference-based approaches, namely, employing a closely related species as the reference genome versus the species itself as the reference genome, to evaluate their respective merits and limitations. Our findings indicate a substantial discrepancy in the number of obtained SNPs between using a closely related species as opposed to the species itself as reference genomes, the former yielded approximately an order of magnitude fewer SNPs compared to the latter. While the missing rate of individuals and sites of the final SNPs obtained in the two scenarios showed no significant difference. The results showed that using the reference genome of the species itself tends to be prioritized in RAD-seq studies. However, if this is unavailable, considering closely related genomes is feasible due to their wide applicability and low missing rate as alternatives. This study contributes to enrich the understanding of the impact of SNP acquisition when utilizing different reference genomes.


Subject(s)
Genome, Plant , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
12.
Natl Sci Rev ; 11(6): nwae060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707204

ABSTRACT

Earth is the only known habitable planet in the solar system. Understanding how Earth developed its unique habitability has been the frontier of Earth sciences and has become one of the main themes of current deep-space explorations. What are the decisive factors that led to a habitable planet? What is the role of solid Earth processes in the origin of life and in modulating the surface environment? Are Earth's habitability studies relevant to current challenges that human beings face? These questions have attracted the interest of both scientists and the public alike. NSR spoke to Prof. Charles H. Langmuir from Harvard University in the USA, who is a solid Earth geochemist who carries out research on diverse aspects of the plate tectonic geochemical cycle, including ocean ridges, convergent margins and intraplate volcanism. Prof. Langmuir is the author of the book How to Build a Habitable Planet (www.habitableplanet.org), one of the best Earth science books published in 2012.

13.
Article in English | MEDLINE | ID: mdl-38714787

ABSTRACT

Relapse is a major challenge in the treatment of drug addiction, and exercise has been shown to decrease relapse to drug seeking in animal models. However, the neural circuitry mechanisms by which exercise inhibits morphine relapse remain unclear. In this study, we report that 4-week treadmill training prevented morphine conditioned place preference (CPP) expression during abstinence by acting through the nucleus accumbens (NAc)-ventral pallidum (VP) pathway. We found that neuronal excitability was reduced in D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) following repeated exposure to morphine and forced abstinence. Enhancing the excitability of NAc D2-MSNs via treadmill training decreased the expression of morphine CPP. We also found that the effects of treadmill training were mediated by decreasing enkephalin levels and that restoring opioid modulation of GABA neurotransmission in the VP, which increased neurotransmitter release from NAc D2-MSNs to VP, decreased morphine CPP. Our findings suggest the inhibitory effect of exercise on morphine CPP is mediated by reversing morphine-induced neuroadaptations in the NAc-to-VP pathway.

14.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762184

ABSTRACT

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Subject(s)
Archaeal Proteins , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Crystallography, X-Ray , Methanocaldococcus/enzymology , Methanocaldococcus/metabolism , Protein Binding , Protein Multimerization , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , Models, Molecular , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics
15.
Physiol Meas ; 45(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38663434

ABSTRACT

Objective. Electrocardiographic (ECG) lead misplacement can result in distorted waveforms and amplitudes, significantly impacting accurate interpretation. Although lead misplacement is a relatively low-probability event, with an incidence ranging from 0.4% to 4%, the large number of ECG records in clinical practice necessitates the development of an effective detection method. This paper aimed to address this gap by presenting a novel lead misplacement detection method based on deep learning models.Approach. We developed two novel lightweight deep learning model for limb and chest lead misplacement detection, respectively. For limb lead misplacement detection, two limb leads and V6 were used as inputs, while for chest lead misplacement detection, six chest leads were used as inputs. Our models were trained and validated using the Chapman database, with an 8:2 train-validation split, and evaluated on the PTB-XL, PTB, and LUDB databases. Additionally, we examined the model interpretability on the LUDB databases. Limb lead misplacement simulations were performed using mathematical transformations, while chest lead misplacement scenarios were simulated by interchanging pairs of leads. The detection performance was assessed using metrics such as accuracy, precision, sensitivity, specificity, and Macro F1-score.Main results. Our experiments simulated three scenarios of limb lead misplacement and nine scenarios of chest lead misplacement. The proposed two models achieved Macro F1-scores ranging from 93.42% to 99.61% on two heterogeneous test sets, demonstrating their effectiveness in accurately detecting lead misplacement across various arrhythmias.Significance. The significance of this study lies in providing a reliable open-source algorithm for lead misplacement detection in ECG recordings. The source code is available athttps://github.com/wjcai/ECG_lead_check.


Subject(s)
Deep Learning , Electrocardiography , Humans , Signal Processing, Computer-Assisted , Thorax
16.
BMC Biol ; 22(1): 101, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685010

ABSTRACT

BACKGROUND: CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS: Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS: Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.


Subject(s)
CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing , Humans , Gene Editing/methods , DNA Breaks , Recombinational DNA Repair , Sequence Deletion , DNA Polymerase theta , Replication Protein A/metabolism , Replication Protein A/genetics
17.
J Mater Chem B ; 12(17): 4063-4079, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38572575

ABSTRACT

DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.


Subject(s)
Biosensing Techniques , DNA , Nanostructures , Nanotechnology , Biosensing Techniques/methods , Humans , DNA/chemistry , DNA/metabolism , Nanostructures/chemistry , DNA Methylation , DNA Modification Methylases/metabolism , DNA Modification Methylases/analysis
18.
Circ Cardiovasc Interv ; 17(5): e013579, 2024 May.
Article in English | MEDLINE | ID: mdl-38629273

ABSTRACT

BACKGROUND: The prognostic impact of left atrial appendage (LAA) patency, including those with and without visible peri-device leak (PDL), post-LAA closure in patients with atrial fibrillation, remains elusive. METHODS: Patients with atrial fibrillation implanted with the WATCHMAN 2.5 device were prospectively enrolled. The device surveillance by cardiac computed tomography angiography was performed at 3 months post-procedure. Adverse events, including stroke/transient ischemic attack (TIA), major bleeding, cardiovascular death, all-cause death, and the combined major adverse events (MAEs), were compared between patients with complete closure and LAA patency. RESULTS: Among 519 patients with cardiac computed tomography angiography surveillance at 3 months post-LAA closure, 271 (52.2%) showed complete closure, and LAA patency was detected in 248 (47.8%) patients, including 196 (37.8%) with visible PDL and 52 (10.0%) without visible PDL. During a median of 1193 (787-1543) days follow-up, the presence of LAA patency was associated with increased risks of stroke/TIA (adjusted hazard ratio for baseline differences, 3.22 [95% CI, 1.17-8.83]; P=0.023) and MAEs (adjusted hazard ratio, 1.12 [95% CI, 1.06-1.17]; P=0.003). Specifically, LAA patency with visible PDL was associated with increased risks of stroke/TIA (hazard ratio, 3.66 [95% CI, 1.29-10.42]; P=0.015) and MAEs (hazard ratio, 3.71 [95% CI, 1.71-8.07]; P=0.001), although LAA patency without visible PDL showed higher risks of MAEs (hazard ratio, 3.59 [95% CI, 1.28-10.09]; P=0.015). Incidences of stroke/TIA (2.8% versus 3.0% versus 6.7% versus 22.2%; P=0.010), cardiovascular death (0.9% versus 0% versus 1.7% versus 11.1%; P=0.005), and MAEs (4.6% versus 9.0% versus 11.7% versus 22.2%; P=0.017) increased with larger PDL (0, >0 to ≤3, >3 to ≤5, or >5 mm). Older age and discontinuing antiplatelet therapy at 6 months were independent predictors of stroke/TIA and MAEs in patients with LAA patency. CONCLUSIONS: LAA patency detected by cardiac computed tomography angiography at 3 months post-LAA closure is associated with unfavorable prognosis in patients with atrial fibrillation implanted with WATCHMAN 2.5 device. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03788941.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Cardiac Catheterization , Computed Tomography Angiography , Ischemic Attack, Transient , Stroke , Humans , Atrial Appendage/physiopathology , Atrial Appendage/diagnostic imaging , Male , Female , Aged , Atrial Fibrillation/physiopathology , Atrial Fibrillation/mortality , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Atrial Fibrillation/diagnostic imaging , Prospective Studies , Risk Factors , Ischemic Attack, Transient/etiology , Time Factors , Treatment Outcome , Stroke/etiology , Stroke/mortality , Aged, 80 and over , Middle Aged , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Risk Assessment , Hemorrhage , Prosthesis Design
19.
Genes (Basel) ; 15(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38397219

ABSTRACT

Quercus is a valuable genus ecologically, economically, and culturally. They are keystone species in many ecosystems. Species delimitation and phylogenetic studies of this genus are difficult owing to frequent hybridization. With an increasing number of genetic resources, we will gain a deeper understanding of this genus. In the present study, we collected four Quercus section Cyclobalanopsis species (Q. poilanei, Q. helferiana, Q. camusiae, and Q. semiserrata) distributed in Southeast Asia and sequenced their complete genomes. Following analysis, we compared the results with those of other species in the genus Quercus. These four chloroplast genomes ranged from 160,784 bp (Q. poilanei) to 161,632 bp (Q. camusiae) in length, with an overall guanine and cytosine (GC) content of 36.9%. Their chloroplast genomic organization and order, as well as their GC content, were similar to those of other Quercus species. We identified seven regions with relatively high variability (rps16, ndhk, accD, ycf1, psbZ-trnG-GCC, rbcL-accD, and rpl32-trnL-UAG) which could potentially serve as plastid markers for further taxonomic and phylogenetic studies within Quercus. Our phylogenetic tree supported the idea that the genus Quercus forms two well-differentiated lineages (corresponding to the subgenera Quercus and Cerris). Of the three sections in the subgenus Cerris, the section Ilex was split into two clusters, each nested in the other two sections. Moreover, Q. camusiae and Q. semiserrata detected in this study diverged first in the section Cyclobalanopsis and mixed with Q. engleriana in the section Ilex. In particular, 11 protein coding genes (atpF, ndhA, ndhD, ndhF, ndhK, petB, petD, rbcL, rpl22, ycf1, and ycf3) were subjected to positive selection pressure. Overall, this study enriches the chloroplast genome resources of Quercus, which will facilitate further analyses of phylogenetic relationships in this ecologically important tree genus.


Subject(s)
Genome, Chloroplast , Quercus , Phylogeny , Quercus/genetics , Ecosystem , Genomics
20.
Transl Res ; 269: 64-75, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395391

ABSTRACT

Pulmonary hypertension (PH) is a severe clinical syndrome with pulmonary vascular remodeling and poor long-term prognosis. Neurotensin receptor 1 (Ntsr1), serve as one of the G protein-coupled receptors (GPCRs), implicates in various biological processes, but the potential effects of Ntsr1 in PH development are unclear. The Sugen/Hypoxia (SuHx) or monocrotaline (MCT) induced rat PH model was used in our study and the PH rats showed aggravated pulmonary artery remodeling and increased right ventricular systolic pressure (RVSP). Our results revealed that Ntsr1 induced endoplasmic reticulum (ER) stress response via ATF6 activation contributed to the development of PH. Moreover, RNA-sequencing (RNA-seq) and phosphoproteomics were performed and the Ntsr1-JAK2-STAT3-thrombospondin 1 (Thbs1)-ATF6 signaling was distinguished as the key pathway. In vitro, pulmonary artery smooth muscle cells (PASMCs) under hypoxia condition showed enhanced proliferation and migration properties, which could be inhibited by Ntsr1 knockdown, JAK2 inhibitor (Fedratinib) treatment, STAT3 inhibitior (Stattic) treatment, Thbs1 knockdown or ATF6 knockdown. In addition, adeno-associated virus 1 (AAV1) were used to knockdown the expression of Ntsr1, Thbs1 or ATF6 in rats and reversed the phenotype of PH. In summary, our results reveal that Ntsr1-JAK2-STAT3-Thbs1 pathway can induce enhanced ER stress via ATF6 activation and increased PASMC proliferation and migration capacities, which can be mechanism of the pulmonary artery remodeling and PH. Targeting Ntsr1 might be a novel therapeutic strategy to ameliorate PH.


Subject(s)
Endoplasmic Reticulum Stress , Hypertension, Pulmonary , Janus Kinase 2 , Receptors, Neurotensin , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Rats , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Cell Movement , Cell Proliferation , Endoplasmic Reticulum Stress/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Janus Kinase 2/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Vascular Remodeling , Receptors, Neurotensin/metabolism , Thrombospondin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL