Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(4): uhae037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617747

ABSTRACT

The homoterpenes (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are the major herbivore-induced plant volatiles that help in defense directly by acting as repellants and indirectly by recruiting insects' natural enemies. In this study, DMNT and TMTT were confirmed to be emitted from citrus (Citrus sinensis) leaves infested with Asian citrus psyllid (Diaphorina citri Kuwayama; ACP), and two cytochrome P450 (CYP) genes (CsCYP82L1 and CsCYP82L2) were newly identified and characterized. Understanding the functions of these genes in citrus defense will help plan strategies to manage huanglongbing caused by Candidatus Liberibacter asiaticus (CLas) and spread by ACP. Quantitative real-time PCR (qPCR) analysis showed that CsCYP82L1 and CsCYP82L2 were significantly upregulated in citrus leaves after ACP infestation. Yeast recombinant expression and enzyme assays indicated that CsCYP82L1 and CsCYP82L2 convert (E)-nerolidol to DMNT and (E,E)-geranyllinalool to TMTT. However, citrus calluses stably overexpressing CsCYP82L1 generated only DMNT, whereas those overexpressing CsCYP82L2 produced DMNT and TMTT. Furthermore, ACPs preferred wild-type lemon (Citrus limon) over the CsCYP82L1-overexpressing line in dual-choice feeding assays and mineral oil over TMTT or DMNT in behavioral bioassays. Finally, yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays demonstrated that CsERF017, an AP2/ERF transcription factor, directly bound to the CCGAC motif and activated CsCYP82L1. Moreover, the transient overexpression of CsERF017 in lemon leaves upregulated CsCYP82L1 in the absence and presence of ACP infestation. These results provide novel insights into homoterpene biosynthesis in C. sinensis and demonstrate the effect of homoterpenes on ACP behavior, laying a foundation to genetically manipulate homoterpene biosynthesis for application in huanglongbing and ACP control.

2.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542394

ABSTRACT

Modern plant breeding relies heavily on the deployment of susceptibility and resistance genes to defend crops against diseases. The expression of these genes is usually regulated by transcription factors including members of the AP2/ERF family. While these factors are a vital component of the plant immune response, little is known of their specific roles in defense against Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) in banana plants. In this study, we discovered that MaERF12, a pathogen-induced ERF in bananas, acts as a resistance gene against Foc TR4. The yeast two-hybrid assays and protein-protein docking analyses verified the interaction between this gene and MaSMG7, which plays a role in nonsense-mediated RNA decay. The transient expression of MaERF12 in Nicotiana benthamiana was found to induce strong cell death, which could be inhibited by MaSMG7 during co-expression. Furthermore, the immunoblot analyses have revealed the potential degradation of MaERF12 by MaSMG7 through the 26S proteasome pathway. These findings demonstrate that MaSMG7 acts as a susceptibility factor and interferes with MaERF12 to facilitate Foc TR4 infection in banana plants. Our study provides novel insights into the biological functions of the MaERF12 as a resistance gene and MaSMG7 as a susceptibility gene in banana plants. Furthermore, the first discovery of interactions between MaERF12 and MaSMG7 could facilitate future research on disease resistance or susceptibility genes for the genetic improvement of bananas.


Subject(s)
Fusarium , Musa , Gene Expression Profiling , Musa/genetics , Plant Diseases/genetics , Plant Roots/genetics , Plant Breeding , Fusarium/genetics
3.
J Fungi (Basel) ; 10(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38392763

ABSTRACT

Banana is one of the most important fruits in the world due to its status as a major food source for more than 400 million people. Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes substantial losses of banana crops every year, and molecular host resistance mechanisms are currently unknown. We here performed a genomewide analysis of the autophagy-related protein 8 (ATG8) family in a wild banana species. The banana genome was found to contain 10 MaATG8 genes. Four MaATG8s formed a gene cluster in the distal part of chromosome 4. Phylogenetic analysis of ATG8 families in banana, Arabidopsis thaliana, citrus, rice, and ginger revealed five major phylogenetic clades shared by all of these plant species, demonstrating evolutionary conservation of the MaATG8 families. The transcriptomic analysis of plants infected with Foc TR4 showed that nine of the MaATG8 genes were more highly induced in resistant cultivars than in susceptible cultivars. Finally, MaATG8F was found to interact with MaATG4B in vitro (with yeast two-hybrid assays), and MaATG8F and MaATG4B all positively regulated banana resistance to Foc TR4. Our study provides novel insights into the structure, distribution, evolution, and expression of the MaATG8 family in bananas. Furthermore, the discovery of interactions between MaATG8F and MaATG4B could facilitate future research of disease resistance genes for the genetic improvement of bananas.

4.
Plant Commun ; 5(1): 100681, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37660253

ABSTRACT

Bananas (Musa spp.) are monocotyledonous plants with high genetic diversity in the Musaceae family that are cultivated mainly in tropical and subtropical countries. The fruits are a popular food, and the plants themselves have diverse uses. Four genetic groups (genomes) are thought to have contributed to current banana cultivars: Musa acuminata (A genome), Musa balbisiana (B genome), Musa schizocarpa (S genome), and species of the Australimusa section (T genome). However, the T genome has not been effectively explored. Here, we present the high-quality TT genomes of two representative accessions, Abaca (Musa textilis), with high-quality natural fiber, and Utafun (Musa troglodytarum, Fe'i group), with abundant ß-carotene. Both the Abaca and Utafun assemblies comprise 10 pseudochromosomes, and their total genome sizes are 613 Mb and 619 Mb, respectively. Comparative genome analysis revealed that the larger size of the T genome is likely attributable to rapid expansion and slow removal of transposons. Compared with those of Musa AA or BB accessions or sisal (Agava sisalana), Abaca fibers exhibit superior mechanical properties, mainly because of their thicker cell walls with a higher content of cellulose, lignin, and hemicellulose. Expression of MusaCesA cellulose synthesis genes peaks earlier in Abaca than in AA or BB accessions during plant development, potentially leading to earlier cellulose accumulation during secondary cell wall formation. The Abaca-specific expressed gene MusaMYB26, which is directly regulated by MusaMYB61, may be an important regulator that promotes precocious expression of secondary cell wall MusaCesAs. Furthermore, MusaWRKY2 and MusaNAC68, which appear to be involved in regulating expression of MusaLAC and MusaCAD, may at least partially explain the high accumulation of lignin in Abaca. This work contributes to a better understanding of banana domestication and the diverse genetic resources in the Musaceae family, thus providing resources for Musa genetic improvement.


Subject(s)
Musa , Musa/genetics , Genome, Plant , Lignin
5.
Plant Commun ; 5(2): 100766, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37974402

ABSTRACT

Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.


Subject(s)
Fusarium , Musa , Musa/genetics , Fusarium/genetics , Haplotypes , Gene Expression Profiling , Transcriptome
7.
Res Sq ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37609348

ABSTRACT

Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most damaging plant diseases recorded. Foc race 1 (R1) decimated the Gros Michel-based banana trade. Currently, tropical race 4 (TR4) is threatening the global production of its replacement cultivar, Cavendish banana. Population genomics and phylogenetics revealed that all Cavendish banana-infecting race 4 strains shared an evolutionary origin that is distinct from R1 strains. The TR4 genome lacks accessory or pathogenicity chromosomes, reported in other F. oxysporum genomes. Accessory genes-enriched for virulence and mitochondrial-related functions-are attached to ends of some core chromosomes. Meta-transcriptomics revealed the unique induction of the entire mitochondria-localized nitric oxide (NO) biosynthesis pathway upon TR4 infection. Empirically, we confirmed the unique induction of NO burst in TR4,suggesting the involvement of nitrosative pressure in its virulence. Targeted mutagenesis demonstrated the functional importance of accessory genes SIX1 and SIX4 as virulent factors.

8.
Plant Physiol Biochem ; 201: 107887, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37442051

ABSTRACT

Huanglongbing (HLB), spread by the Asian citrus psyllid (ACP), is a widespread, devastating disease that causes significant losses in citrus production. Therefore, controlling the ACP infestation and HLB infection is very important for citrus production. The aim of our study was to identify any citrus volatile which could be used as a repellent or less attractant towards ACP, and to envisage the potential of this strategy to control HLB spread. The present study identified a terpene synthase (TPS)-encoding gene CsTPS21 in citrus plants, and this gene was predicted to encode a monoterpene synthase and had an amino acid sequence similar to ß-ocimene synthase. CsTPS21 was significantly upregulated by ACP infestation and methyl jasmonic acid (MeJA) treatment but downregulated by salicylic acid (SA). Further heterologous gene expression studies in yeast cells and tobacco plants indicated that the protein catalyzed the formation of ß-ocimene, which acted as an ACP repellent. Detailed analysis of tobacco overexpressing CsTPS21 showed that CsTPS21 synthesizing ß-ocimene regulated jasmonic acid (JA)-associated pathways by increasing the JA accumulation and inducing the JA biosynthetic gene expression to defend against insect infestation. These findings provide a basis to plan strategies to manage HLB in the field using ß-ocimene and CsTPS21 as candidates.


Subject(s)
Citrus , Hemiptera , Animals , Citrus/genetics , Citrus/metabolism , Plant Diseases/genetics
9.
Front Plant Sci ; 14: 1125375, 2023.
Article in English | MEDLINE | ID: mdl-36866367

ABSTRACT

Introduction: Polyphenol oxidases (PPOs), which are widely present in plants, play an important role in the growth, development, and stress responses. They can catalyze the oxidization of polyphenols and result in the browning of damaged or cut fruit, which seriously affects fruit quality and compromises the sale of fruit. In banana (Musa acuminata, AAA group), 10 PPO genes were determined based on the availability of a high-quality genome sequence, but the role of PPO genes in fruit browning remains unclear. Methods: In this study, we analyzed the physicochemical properties, gene structure, conserved structural domains, and evolutionary relationship of the PPO gene family of banana. The expression patterns were analyzed based on omics data and verified by qRT-PCR analysis. Transient expression assay in tobacco leaves was used to identify the subcellular localization of selected MaPPOs, and we analyzed the polyphenol oxidase activity using recombinant MaPPOs and transient expression assay. Results and discussion: We found that more than two-thirds of the MaPPO genes had one intron, and all contained three conserved structural domains of PPO, except MaPPO4. Phylogenetic tree analysis revealed that MaPPO genes were categorized into five groups. MaPPOs did not cluster with Rosaceae and Solanaceae, indicating distant affinities, and MaPPO6/7/8/9/10 clustered into an individual group. Transcriptome, proteome, and expression analyses showed that MaPPO1 exhibits preferential expression in fruit tissue and is highly expressed at respiratory climacteric during fruit ripening. Other examined MaPPO genes were detectable in at least five different tissues. In mature green fruit tissue, MaPPO1 and MaPPO6 were the most abundant. Furthermore, MaPPO1 and MaPPO7 localized in chloroplasts, and MaPPO6 was a chloroplast- and Endoplasmic Reticulum (ER)-localized protein, whereas MaPPO10 only localized in the ER. In addition, the enzyme activity in vivo and in vitro of the selected MaPPO protein showed that MaPPO1 had the highest PPO activity, followed by MaPPO6. These results imply that MaPPO1 and MaPPO6 are the main contributors to banana fruit browning and lay the foundation for the development of banana varieties with low fruit browning.

10.
Plant Physiol Biochem ; 194: 643-650, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36535104

ABSTRACT

Fruit ripening is the last phase of fruit growth and development. The initiation and progression of fruit ripening are highly modulated by a plethora of key genes, such as transcription factor (TF) genes. The WRKY gene family is a large group of TFs that play important roles in various cellular processes; nevertheless, the role of WRKY TF on fruit ripening remains enigmatic. Here, we report that a banana WRKY TF, MaWRKY49 functions in ethylene-induced fruit ripening by modulating the expression of fruit softening-related genes. We found that the expression of MaWRKY49 is highly induced by ethephon and inhibited by 1-methylcyclopropene, which is synchronous with the ripening process. Moreover, based on transcriptome data on fruit ripening, two pectate lyase (PL) genes that are involved in fruit softening were determined, and their expression pattern is also consistent with the fruit ripening process. Yeast one-hybrid and dual-luciferase assay confirmed that MaWRKY49 activated the transcription of two PL genes. In addition, transient overexpression of MaWRKY49 in banana fruits can apparently accelerate fruit ripening processs. Taken together, our findings indicate that MaWRKY49 acts as a potential modulator of fruit ripening by direct regulation of PL expression. This work contributes to developing the technology for improving the shelf-life of banana fruit.


Subject(s)
Musa , Transcription Factors , Transcription Factors/metabolism , Musa/genetics , Musa/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Plant Proteins/metabolism
11.
Food Chem ; 403: 134380, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36194931

ABSTRACT

Banana fruits have attracted considerable attention for health-promoting effects attributed to ubiquitous functional metabolites. However, genotype-dependent accumulation patterns of carotenoids in banana remain largely unclear. Here, we performed a systematic metabolomic investigation of 18 banana cultivars of the AAA, AAB, or ABB genome groups. Our results indicate that the levels of soluble sugars increase during postharvest ripening regardless of genotype, whereas amino acids (AAs) and tricarboxylic acid (TCA) cycle-derived organic acids display genotype-dependent patterns. The levels of AAs derived from the glycolytic pathway increased, whereas those derived from the TCA cycle significantly decreased during ripening. The carotenoid composition in banana pulp was genotype-specific, and the contents of α-carotene were the highest in AAA-genome bananas. Moreover, high α-carotene and ß-carotene contents in banana were correlated with elevated levels of TCA cycle-derived AAs and decreased levels of glycolysis-derived AAs. Taken together, these findings provide a comprehensive understanding of genotype-associated carotenoid accumulation, thereby facilitating the breeding of future high carotenoid banana cultivars.


Subject(s)
Musa , Musa/chemistry , Plant Breeding , Carotenoids/analysis , Fruit/chemistry , Genotype
12.
J Fungi (Basel) ; 8(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36547607

ABSTRACT

Banana cultivars with the AAB genome group comprise diverse subgroups, such as Plantain, Silk, Iholena, and Pisang Raja, among others, which play an important role in food security in many developing countries. Some of these cultivars are susceptible to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), the most destructive pathogen threatening banana production worldwide, and some of them are still largely unknown. We evaluated the resistance of 37 banana genotypes, including Plantain, Silk, Iholena, Maia Maoli/Popoulu, Pisang Raja, Pome, and Mysore, to Foc TR4 under both greenhouse and field conditions. Genotypes from the Silk and Iholena subgroups were highly susceptible to Foc TR4. Pome and Mysore showed resistance and intermediate resistance, respectively. However, Pisang Raja ranged from susceptible to intermediate resistance. One cultivar from the Maia Maoli/Popoulu subgroup was highly susceptible, while the other displayed significant resistance. Most Plantain cultivars exhibited high resistance to Foc TR4, except two French types of cultivar, 'Uganda Plantain' and 'Njombe N°2', which were susceptible. The susceptibility to Foc TR4 of some of the AAB genotypes evaluated, especially Plantain and other cooking bananas, indicates that growers dependent on these varieties need to be included as part of the prevention and integrated Foc TR4 management strategies, as these genotypes play a crucial role in food security and livelihoods.

13.
Life (Basel) ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36556370

ABSTRACT

The Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) is a major citrus pest spread around the world. It is also a vector of the bacterium 'Candidatus Liberibacter asiaticus', considered the cause of the fatal citrus disease huanglongbing (HLB). Insect ryanodine receptors (RyRs) are the primary target sites of diamide insecticides. In this study, full-length RyR cDNA from D. citri (named DcRyR) was isolated and identified. The 15,393 bp long open reading frame of DcRyR encoded a 5130 amino acid protein with a calculated molecular weight of 580,830 kDa. This protein had a high sequence identity (76-79%) with other insect homologs and a low sequence identity (43-46%) with mammals. An MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, an RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands, and six transmembrane domains were among the characteristics that DcRyR shared with insect and vertebrate RyRs. In expression analysis, the DcRyR gene displayed transcript abundance in all tissues and developmental stages as well as gene-differential and stage-specific patterns. In addition, diagnostic PCR experiments revealed that DcRyR had three potential alternative splice variants and that splicing events might have contributed to the various functions of DcRyR. However, diamide resistance-related amino acid residue mutations I4790M/K and G4946E were not found in DcRyR. These results can serve as the basis for further investigation into the target-based diamide pesticide resistance of D. citri.

14.
Food Chem X ; 15: 100371, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35769331

ABSTRACT

Banana is one of most popular fruits globally due to health-promoting and disease-preventing effects, yet little is known about in situ metabolic changes across banana varieties. Here, we integrated gold nanoparticle (AuNP)-assisted laser desorption/ionization mass spectrometry imaging (LDI-MSI) and metabolomics to investigate the spatiotemporal distribution and levels of metabolites within Brazil and Dongguan banana pulps during postharvest senescence. Metabolomics results indicated that both postripening stages and banana varieties contribute to metabolite levels. Benefiting from improved ionization efficiency of small-molecule metabolites and less peak interference, we visualized the spatiotemporal distribution of sugars, amino acids (AAs) and monoamines within pulps using AuNP-assisted LDI-MSI for the first time, revealing that AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides and di/trisaccharides were generally distributed across entire pulps but exhibited different accumulation patterns. These findings provide a guide for breeding new varieties and improving extraction efficiency of bioactive compounds.

15.
Plant Biotechnol J ; 20(8): 1622-1635, 2022 08.
Article in English | MEDLINE | ID: mdl-35524453

ABSTRACT

Plant genetic transformation is a crucial step for applying biotechnology such as genome editing to basic and applied plant science research. Its success primarily relies on the efficiency of gene delivery into plant cells and the ability to regenerate transgenic plants. In this study, we have examined the effect of several developmental regulators (DRs), including PLETHORA (PLT5), WOUND INDUCED DEDIFFERENTIATION 1 (WIND1), ENHANCED SHOOT REGENERATION (ESR1), WUSHEL (WUS) and a fusion of WUS and BABY-BOOM (WUS-P2A-BBM), on in planta transformation through injection of Agrobacterium tumefaciens in snapdragons (Antirrhinum majus). The results showed that PLT5, WIND1 and WUS promoted in planta transformation of snapdragons. An additional test of these three DRs on tomato (Solanum lycopersicum) further demonstrated that the highest in planta transformation efficiency was observed from PLT5. PLT5 promoted calli formation and regeneration of transformed shoots at the wound positions of aerial stems, and the transgene was stably inherited to the next generation in snapdragons. Additionally, PLT5 significantly improved the shoot regeneration and transformation in two Brassica cabbage varieties (Brassica rapa) and promoted the formation of transgenic calli and somatic embryos in sweet pepper (Capsicum annum) through in vitro tissue culture. Despite some morphological alternations, viable seeds were produced from the transgenic Bok choy and snapdragons. Our results have demonstrated that manipulation of PLT5 could be an effective approach for improving in planta and in vitro transformation efficiency, and such a transformation system could be used to facilitate the application of genome editing or other plant biotechnology application in modern agriculture.


Subject(s)
Brassica , Capsicum , Solanum lycopersicum , Agrobacterium tumefaciens/genetics , Brassica/genetics , Capsicum/genetics , Solanum lycopersicum/genetics , Plants, Genetically Modified/genetics , Transformation, Genetic , Transgenes
16.
Plant Dis ; 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35467941

ABSTRACT

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), has been considered as the most devastating disease affecting bananas (Musa spp.) worldwide. A highly virulent strain of Foc, known as tropical race 4 (TR4), has been detected in the southeast Asia in the 1990s, and has since spread to western Asia, Australia, the Middle East, southern Africa, and South America (Viljoen et al. 2020). Foc TR4 can cause severe yield losses in Cavendish (AAA), Gros Michel (AAA), Silk (AAB), Pisang Awak (ABB) and Bluggoe (ABB) bananas (Ploetz et al. 2006). However, cooking bananas such as plantain (AAB) and Matooke (AAA) bananas, appear to be resistant (Zuo et al. 2017). Iholena bananas (AAB), a subgroup of varieties related to plantains (also known as Pacific plantains), is an important staple food in the Pacific Islands where it was domesticated. It is also popular in Peru, probably due to its nutritional value (Kepler et al. 2011) and is wildly cultivated in other South American countries (Dita et al. 2013). In December 2019, typical symptoms of banana Fusarium wilt were observed on Iholena accession 'Pacific Plantain' (ITC0210) in experimental fields located in Dongguan, Guangdong Province of China. The symptoms included leaf yellowing and pseudostem splitting. The vascular tissue inside the pseudostems was dark red to brown, and the inner rhizomes yellowish-brown. Vascular tissues from three diseased plants were sampled aseptically and placed on potato dextrose agar (PDA) containing 0.05 g/liter kanamycin. Fungal colonies typical of F. oxysporum developed rapidly, with purple-tinged white aerial mycelia and an abundance of microconidia borne in false heads on short microconidia (Nelson et al. 1983). Chlamydospores were produced singly or in pairs in hyphae and macroconidia. Molecular identification was performed using Foc race 4-specific primers (Lin et al. 2009), Foc TR4-specific primers (Dita et al. 2010), Foc race 1 and Foc STR4-specific primers (Ndayihanzamaso et al. 2020). Amplicons of expected sizes were obtained for Foc TR4 and race 4, but not for Foc race 1 and STR4. Sequencing of the ITS and 18S rDNA from the three Iholena isolates and BLAST result showed a 100% similarity to the Foc TR4 reference sequences in GenBank (Foc II5, PRJNA73539 and PRJNA56513) to prove that the isolates were Foc TR4. Pathogenicity of the three isolates from Iholena bananas was determined by infecting 4-month-old Cavendish cv. 'Grand Nain' bananas and three Iholena accessions, 'Pacific Plantain' 'Tigua' and 'Uzakan', under greenhouse conditions by root immersion in a Foc conidial suspension and soil drenching at 106 conidia/ml (Dita, 2010). Control plants were treated with sterile distilled water. Three replications of five plantlets were used for each accession. After 35 days, the inoculated plantlets developed typical Fusarium wilt symptoms such as yellowing of the older leaves and discoloration of the inner rhizome. The control plants did not develop symptoms. To complete Koch's postulates, the fungus was re-isolated from inoculated plants and identified as Foc TR4 by PCR (Dita et al, 2010). The susceptibility of 'Tigua' and 'Uzakan' was also confirmed in Foc TR4-infested field trials, with both accessions developing severe Fusarium wilt symptoms. The susceptibility of Iholena bananas to Foc TR4 is of significant concern to all countries where this subgroup is cultivated for major food source, including Peru and other South American countries.

17.
Fungal Biol ; 126(3): 213-223, 2022 03.
Article in English | MEDLINE | ID: mdl-35183338

ABSTRACT

ECM33, a glycosylphosphatidylinositol (GPI)-anchored protein, is important for fungal development and infection through regulating fungal cell wall integrity, however, the functions of its orthologs in pathogenesis have not been characterized in Fusarium oxysporum. Here, we discovered a GPI-anchored protein, FocECM33, which is required for vegetative growth and virulence of Fusasium oxysporum f. sp. cubense tropical race 4 (Foc TR4). FocECM33 was highly upregulated during the early infection process of Foc TR4 in banana roots. The targeted disruption of FocECM33 led to decreased hyphal growth, increased sensitivity to cell wall stresses and reduced virulence on banana plantlets. Furthermore, ΔFocECM33 mutant demonstrated a cell morphology defect, elevated ROS production and increased chitin content. Transcriptome analysis showed that FocECM33 has a significant influence on the production of various secondary metabolites and regulation of many biosynthetic processes in Foc TR4. Taken together, it seems FocECM33 contributes to the virulence of Foc TR4 through regulating the process of hyphal growth, ROS production and chitin synthesis.


Subject(s)
Fusarium , Musa , Glycosylphosphatidylinositols , Musa/microbiology , Plant Diseases/microbiology , Virulence
18.
PeerJ ; 10: e12664, 2022.
Article in English | MEDLINE | ID: mdl-35036088

ABSTRACT

The CRISPR/Cas9-mediated genome editing system has been used extensively to engineer targeted mutations in a wide variety of species. Its application in banana, however, has been hindered because of the species' triploid nature and low genome editing efficiency. This has delayed the development of a DNA-free genome editing approach. In this study, we reported that the endogenous U6 promoter and banana codon-optimized Cas9 apparently increased mutation frequency in banana, and we generated a method to validate the mutation efficiency of the CRISPR/Cas9-mediated genome editing system based on transient expression in protoplasts. The activity of the MaU6c promoter was approximately four times higher than that of the OsU6a promoter in banana protoplasts. The application of this promoter and banana codon-optimized Cas9 in CRISPR/Cas9 cassette resulted in a fourfold increase in mutation efficiency compared with the previous CRISPR/Cas9 cassette for banana. Our results indicated that the optimized CRISPR/Cas9 system was effective for mutating targeted genes in banana and thus will improve the applications for basic functional genomics. These findings are relevant to future germplasm improvement and provide a foundation for developing DNA-free genome editing technology in banana.


Subject(s)
Gene Editing , Musa , Gene Editing/methods , CRISPR-Cas Systems/genetics , Musa/genetics , Mutation , Mutagenesis, Site-Directed
20.
BMC Plant Biol ; 21(1): 125, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648452

ABSTRACT

BACKGROUND: Banana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musa spp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach. RESULTS: A total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed. CONCLUSIONS: The results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


Subject(s)
Musa/growth & development , Musa/genetics , Plant Stems/growth & development , Plant Stems/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gibberellins/metabolism , Metabolome , Phenotype , Plant Growth Regulators/metabolism , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...