Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 13(15): e2304140, 2024 06.
Article in English | MEDLINE | ID: mdl-38444227

ABSTRACT

The authors report the fabrication of highly sensitive, rapidly responding flexible force sensors using ZnO/ZnMgO coaxial nanotubes grown on graphene layers and their applications in sleep apnea monitoring. Flexible force sensors are fabricated by forming Schottky contacts to the nanotube array, followed by the mechanical release of the entire structure from the host substrate. The electrical characteristics of ZnO and ZnO/ZnMgO nanotube-based sensors are thoroughly investigated and compared. Importantly, in force sensor applications, the ZnO/ZnMgO coaxial structure results in significantly higher sensitivity and a faster response time when compared to the bare ZnO nanotube. The origin of the improved performance is thoroughly discussed. Furthermore, wireless breath sensing is demonstrated using the ZnO/ZnMgO pressure sensors with custom electronics, demonstrating the feasibility of the sensor technology for health monitoring and the potential diagnosis of sleep apnea.


Subject(s)
Graphite , Nanotubes , Zinc Oxide , Zinc Oxide/chemistry , Nanotubes/chemistry , Graphite/chemistry , Humans , Breath Tests/methods , Breath Tests/instrumentation , Sleep Apnea Syndromes/diagnosis
2.
Small ; 20(25): e2308925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38268229

ABSTRACT

III-VI metal chalcogenides have garnered considerable research attention as a novel group of layered van der Waals materials because of their exceptional physical properties and potential technological applications. Here, the epitaxial growth and stacking sequences of InTe is reported, an essential and intriguing material from III-VI metal chalcogenides. Aberration-corrected scanning transmission electron microscopy (STEM) is utilized to directly reveal the interlayer stacking modes and atomic structure, leading to a discussion of a new polytype. Furthermore, correlations between the stacking sequences and interlayer distances are substantiated by atomic-resolution STEM analysis, which offers evidence for strong interlayer coupling of the new polytype. It is proposed that layer-by-layer deposition is responsible for the formation of the unconventional stacking order, which is supported by ab initio density functional theory calculations. The results thus establish molecular beam epitaxy as a viable approach for synthesizing novel polytypes. The experimental validation of the InTe polytype here expands the family of materials in the III-VI metal chalcogenides while suggesting the possibility of new stacking sequences for known materials in this system.

3.
Nano Lett ; 23(24): 11578-11585, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38051017

ABSTRACT

We report the growth of high-quality GaN epitaxial thin films on graphene-coated c-sapphire substrates using pulsed-mode metalorganic vapor-phase epitaxy, together with the fabrication of freestanding GaN films by simple mechanical exfoliation for transferable light-emitting diodes (LEDs). High-quality GaN films grown on the graphene-coated sapphire substrates were easily lifted off by using thermal release tape and transferred onto foreign substrates. Furthermore, we revealed that the pulsed operation of ammonia flow during GaN growth was a critical factor for the fabrication of high-quality freestanding GaN films. These films, exhibiting excellent single crystallinity, were utilized to fabricate transferable GaN LEDs by heteroepitaxially growing InxGa1-xN/GaN multiple quantum wells and a p-GaN layer on the GaN films, showing their potential application in advanced optoelectronic devices.

4.
Nanotechnology ; 35(8)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37988751

ABSTRACT

We report the growth of single-crystalline GaN microdisk arrays on graphene and their application in flexible light-emitting diodes (LEDs). Graphene layers were directly grown onc-sapphire substrates using chemical vapor deposition and employed as substrates for GaN growth. Position-controlled GaN microdisks were laterally overgrown on the graphene layers with a micro-patterned SiO2mask using metal-organic vapor-phase epitaxy. The as-grown GaN microdisks exhibited excellent single crystallinity with a uniform in-plane orientation. Furthermore, we fabricated flexible micro-LEDs by achieving heteroepitaxial growth ofn-GaN, InxGa1-xN/GaN multiple quantum wells, andp-GaN layers on graphene-coated sapphire substrates. The GaN micro-LED arrays were successfully transferred onto bendable substrates and displayed strong blue light emission under room illumination, demonstrating their potential for integration into flexible optoelectronic devices.

5.
ACS Nano ; 17(21): 21678-21689, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37843425

ABSTRACT

In this study, we investigate the thermochemical stability of graphene on the GaN substrate for metal-organic chemical vapor deposition (MOCVD)-based remote epitaxy. Despite excellent physical properties of GaN, making it a compelling choice for high-performance electronic and light-emitting device applications, the challenge of thermochemical decomposition of graphene on a GaN substrate at high temperatures has obstructed the achievement of remote homoepitaxy via MOCVD. Our research uncovers an unexpected stability of graphene on N-polar GaN, thereby enabling the MOCVD-based remote homoepitaxy of N-polar GaN. Our comparative analysis of N- and Ga-polar GaN substrates reveals markedly different outcomes: while a graphene/N-polar GaN substrate produces releasable microcrystals (µCs), a graphene/Ga-polar GaN substrate yields nonreleasable thin films. We attribute this discrepancy to the polarity-dependent thermochemical stability of graphene on the GaN substrate and its subsequent reaction with hydrogen. Evidence obtained from Raman spectroscopy, electron microscopic analyses, and overlayer delamination points to a pronounced thermochemical stability of graphene on N-polar GaN during MOCVD-based remote homoepitaxy. Molecular dynamics simulations, corroborated by experimental data, further substantiate that the thermochemical stability of graphene is reliant on the polarity of GaN, due to different reactions with hydrogen at high temperatures. Based on the N-polar remote homoepitaxy of µCs, the practical application of our findings was demonstrated in fabrication of flexible light-emitting diodes composed of p-n junction µCs with InGaN heterostructures.

6.
Nanotechnology ; 33(48)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-35998510

ABSTRACT

The strain occurs spontaneously at the heterogeneous interfaces of virtually all crystalline materials. Consequently, the analysis across multiple interfaces requires a complementary characterization scheme with a resolution that fits the deformation scale. By implementing two-photon confocal laser scanning nanoscopy with an axial resolution of 10 nm, we extract the surface strain from the photoluminescence (PL) spectra, epitomized by a 2-fold enhancement at the tapered tips in comparison to the substrate of ZnO nanorods. We firstly traced the well-established contribution from quantum confinement (QC) to PL shift in three geometrically classified regions: (I) a strongly tapered region where the diameter increases from 3 to 20 nm; (II) a weakly tapered region with a gradually increasing diameter from 20 to 58 nm; (III) round cylindrical region interfacing the sapphire substrate. The measured PL shift influenced by the deformation is significantly stronger than the attained QC effect. Particularly, surface strain at the strongly tapered region turned out to drastically increase the PL shift which matches well with the analysis based on the surface to volume ratio incorporating mechanical parameters such as the compliance tensor component, strain dislocation constant, and surface stress. The surface strain increased at a lower temperature, further disclosing its inherent dependence on the thermal expansion coefficients in clear contrast to the temperature-invariant characteristics of QC.

7.
Sci Rep ; 11(1): 22697, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34811457

ABSTRACT

We report on morphology-controlled remote epitaxy via hydrothermal growth of ZnO micro- and nanostructure crystals on graphene-coated GaN substrate. The morphology control is achieved to grow diverse morphologies of ZnO from nanowire to microdisk by changing additives of wet chemical solution at a fixed nutrient concentration. Although the growth of ZnO is carried out on poly-domain graphene-coated GaN substrate, the direction of hexagonal sidewall facet of ZnO is homogeneous over the whole ZnO-grown area on graphene/GaN because of strong remote epitaxial relation between ZnO and GaN across graphene. Atomic-resolution transmission electron microscopy corroborates the remote epitaxial relation. The non-covalent interface is applied to mechanically lift off the overlayer of ZnO crystals via a thermal release tape. The mechanism of facet-selective morphology control of ZnO is discussed in terms of electrostatic interaction between nutrient solution and facet surface passivated with functional groups derived from the chemical additives.

8.
Sci Rep ; 11(1): 17524, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34471184

ABSTRACT

This paper describes the fabrication process and characteristics of dimension- and position-controlled gallium nitride (GaN) microstructure arrays grown on graphene films and their quantum structures for use in flexible light-emitting device applications. The characteristics of dimension- and position-controlled growth, which is crucial to fabricate high-performance electronic and optoelectronic devices, were investigated using scanning and transmission electron microscopes and power-dependent photoluminescence spectroscopy measurements. Among the GaN microstructures, GaN microrods exhibited excellent photoluminescence characteristics including room-temperature stimulated emission, which is especially useful for optoelectronic device applications. As one of the device applications of the position-controlled GaN microrod arrays, we fabricated light-emitting diodes (LEDs) by heteroepitaxially growing InxGa1-xN/GaN multiple quantum wells (MQWs) and a p-type GaN layer on the surfaces of GaN microrods and by depositing Ti/Au and Ni/Au metal layers to prepare n-type and p-type ohmic contacts, respectively. Furthermore, the GaN microrod LED arrays were transferred onto Cu foil by using the chemical lift-off method. Even after being transferred onto the flexible Cu foil substrate, the microrod LEDs exhibited strong emission of visible blue light. The proposed method to enable the dimension- and position-controlled growth of GaN microstructures on graphene films can likely be used to fabricate other high-quality flexible inorganic semiconductor devices such as micro-LED displays with an ultrahigh resolution.

9.
Ultramicroscopy ; 231: 113314, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34024663

ABSTRACT

A novel combination of machine learning algorithms is proposed for the differentiation of distinct spectra in a large electron energy loss spectroscopy spectrum image (EELS-SI) dataset. For clustering of the EEL spectra including similar fine structures in an efficient space, linear and nonlinear dimensionality reduction methods are used to project the EEL spectra onto a low-dimensional space. Then, a density-based clustering algorithm is applied to distinguish the meaningful data clusters. By applying this strategy to various experimental EELS-SI datasets, differentiation of several groups of EEL spectra representing specific fine structures was achieved. It is possible to investigate particular fine structures by averaging all of the spectra in each cluster. Also, the spatial distributions of each cluster in the scanning regions can be observed, which enables investigation of the locations of different fine structures in materials. This method does not require any prior knowledge, i.e., it is a data-driven analysis; therefore, it can be applied to any hyperspectral image.

10.
Sci Rep ; 11(1): 10517, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34006990

ABSTRACT

There has been limited research devoted to secondary electron emission (SEE) from nano-materials using rapid and heavy ion bombardment. Here we report a comparison of SEE properties between novel nano-materials with a three-dimensional nano-structure composed of a mostly regular pattern of rods and gold used as a standard material for SEE under bombardment of heavy ions at energies of a few MeV/nucleon. The nano-structured materials show enhanced SEE properties when compared with gold. Results from this work will enable the development of new radiation detectors for science and industry.

11.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35010030

ABSTRACT

The chemical vapor deposition of hexagonal boron nitride layers from BCl3 and NH3 is highly beneficial for scalable synthesis with high controllability, yet multiple challenges such as corrosive reaction or by-product formation have hindered its successful demonstration. Here, we report the synthesis of polycrystalline hexagonal boron nitride (h-BN) layers on copper foil using BCl3 and NH3. The sequential pulse injection of precursors leads to the formation of atomically thin h-BN layers with a polycrystalline structure. The relationship between growth temperature and crystallinity of the h-BN film is investigated using transmission electron microscopy and Raman spectroscopy. Investigation on the initial growth mode achieved by the suppression of precursor supply revealed the formation of triangular domains and existence of preferred crystal orientations. The possible growth mechanism of h-BN in this sequential-pulsed CVD is discussed.

12.
Sci Rep ; 10(1): 19677, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33184325

ABSTRACT

We report flexible and monolithically integrated multicolor light-emitting diode (LED) arrays using morphology-controlled growth of GaN microstructures on chemical-vapor-deposited (CVD) graphene films. As the morphology-controlled growth template of GaN microstructures, we used position-controlled ZnO nanostructure arrays with different spacings grown on graphene substrates. In particular, we investigated the effect of the growth parameters, including micropattern spacings and growth time and temperature, on the morphology of the GaN microstructures when they were coated on ZnO nanostructures on graphene substrates. By optimizing the growth parameters, both GaN microrods and micropyramids formed simultaneously on the graphene substrates. Subsequent depositions of InGaN/GaN quantum well and p-GaN layers and n- and p-type metallization yielded monolithic integration of microstructural LED arrays on the same substrate, which enabled multicolor emission depending on the shape of the microstructures. Furthermore, the CVD graphene substrates beneath the microstructure LEDs facilitated transfer of the LED arrays onto any foreign substrate. In this study, Cu foil was used for flexible LEDs. The flexible devices exhibited stable electroluminescence, even under severe bending conditions. Cyclic bending tests demonstrated the excellent mechanical stability and reliability of the devices.

13.
Sci Adv ; 6(46)2020 Nov.
Article in English | MEDLINE | ID: mdl-33188031

ABSTRACT

We report large-scale and multiplexed tactile sensors with submillimeter-scale shear sensation and autonomous and real-time closed-loop grip adjustment. We leveraged dual-gate piezoelectric zinc oxide (ZnO) thin-film transistors (TFTs) fabricated on flexible substrates to record normal and shear forces with high sensitivity over a broad range of forces. An individual ZnO TFT can intrinsically sense, amplify, and multiplex force signals, allowing ease of scalability for multiplexing from hundreds of elements with 100-µm spatial and sub-10-ms temporal resolutions. Notably, exclusive feedback from the tactile sensor array enabled rapid adjustment of grip force to slip, enabling the direct autonomous robotic tactile perception with a single modality. For biomedical and implantable device applications, pulse sensing and underwater flow detection were demonstrated. This robust technology, with its reproducible and reliable performance, can be immediately translated for use in industrial and surgical robotics, neuroprosthetics, implantables, and beyond.

14.
Data Brief ; 28: 105049, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32226810

ABSTRACT

The knowledge of optical nonlinearity is pre-requisite for the utility of the nonlinear optical (NLO) materials for optoelectronic device fabrication. Z-scan experimental technique based on the principles of spatial beam distortion, has been successfully employed for years to precisely investigate the NLO parameters. In the field of optical nonlinearity, graphene has proven itself as a strong candidate material owing to the possibility of strong light-matter interactions. A detailed comparison of the NLO properties of graphene and its derivatives (G/GDs) is crucial to identify and accelerate their utility for future flexible optoelectronic device applications. Herein, we share the experimental records of the optical nonlinearity in G/GDs, obtained from the well established Z-scan technique from the available literature, reported in the period from 2009 to 2019 and were extracted from the provided raw data [1]. The data sheet includes material composition, characteristics of the excitation laser source (operating wavelength, laser energy/power/intensity) and the NLO parameters (nonlinear absorption (NLA), nonlinear refraction (NLR), saturation intensity, optical limiting threshold). For practical use, they are tabulated in the present paper and will enable users to search the material data and filter down the set of desired materials using given parameters for their possible optoelectronic device applications. The data is related to the research article entitled "Unraveling absorptive and refractive optical nonlinearities in CVD grown graphene layers transferred onto a foreign quartz substrate" (Agrawal et al., 2019) [2].

15.
Front Chem ; 7: 582, 2019.
Article in English | MEDLINE | ID: mdl-31482089

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) has been intensively investigated during the past decades for its enormous electromagnetic field enhancement near the nanoscale metallic surfaces. Chemical enhancement of SERS, however, remains rather elusive despite intensive research efforts, mainly due to the relatively complex enhancing factors and inconsistent experimental results. To study details of chemical enhancement mechanism, we prepared various low dimensional semiconductor substrates such as ZnO and GaN that were fabricated via metal organic chemical vapor deposition process. We used three kinds of molecules (4-MPY, 4-MBA, 4-ATP) as analytes to measure SERS spectra under non-plasmonic conditions to understand charge transfer mechanisms between a substrate and analyte molecules leading to chemical enhancement. We observed that there is a preferential route for charge transfer responsible for chemical enhancement, that is, there exists a dominant enhancement process in non-plasmonic SERS. To further confirm our idea of charge transfer mechanism, we used a combination of 2-dimensional transition metal dichalcogenide substrates and analyte molecules. We also observed significant enhancement of Raman signal from molecules adsorbed on 2-dimensional transition metal dichalcogenide surface that is completely consistent with our previous results. We also discuss crucial factors for increasing enhancement factors for chemical enhancement without involving plasmonic resonance.

16.
Nat Mater ; 18(5): 448-453, 2019 05.
Article in English | MEDLINE | ID: mdl-30988451

ABSTRACT

Control of the interlayer twist angle in two-dimensional van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moiré superlattice of tunable length scale1-8. In twisted bilayer graphene, the simple moiré superlattice band description suggests that the electronic bandwidth can be tuned to be comparable to the vdW interlayer interaction at a 'magic angle'9, exhibiting strongly correlated behaviour. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favouring interlayer commensurability, which competes with the intralayer lattice distortion10-16. Here we report atomic-scale reconstruction in twisted bilayer graphene and its effect on the electronic structure. We find a gradual transition from an incommensurate moiré structure to an array of commensurate domains with soliton boundaries as we decrease the twist angle across the characteristic crossover angle, θc ≈ 1°. In the solitonic regime (θ < θc) where the atomic and electronic reconstruction become significant, a simple moiré band description breaks down and the secondary Dirac bands appear. On applying a transverse electric field, we observe electronic transport along the network of one-dimensional topological channels that surround the alternating triangular gapped domains. Atomic and electronic reconstruction at the vdW interface provide a new pathway to engineer the system with continuous tunability.

17.
Nanoscale ; 11(1): 45-49, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30534790

ABSTRACT

We used high-quality ZnO nanostructures/graphene substrates for understanding the mechanisms of charge transfer (CT) that take place under nonplasmonic conditions. As the optimal conditions for CT processes are found, we studied the range of CT normal to the ZnO surface that is coated with nanoscale HfO2 layers with different thicknesses. We could observe that CT decays over a few nanometers. In addition, we also observed a unique oscillation of the SERS intensity in the atomically thin oxide layers, which reflects the quantum tunneling effects of CT electrons across the oxide layers. To the best of our knowledge, this is the first direct observation of SERS-active charge transport and measurement of a CT span with atomic-scale accuracy.

18.
Small ; 14(17): e1800240, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29611339

ABSTRACT

The bottom-up integration of a 1D-2D hybrid semiconductor nanostructure into a vertical field-effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position- and dimension-controlled single crystal ZnO nanotubes vertically on a large graphene film. The graphene film, which acts as the substrate, provides a bottom electrical contact to the nanotubes. Due to the high quality of the single crystal ZnO nanotubes and the unique 1D device structure, the fabricated VFET exhibits excellent electrical characteristics. For example, it has a small subthreshold swing of 110 mV dec-1 , a high Imax /Imin ratio of 106 , and a transconductance of 170 nS µm-1 . The electrical characteristics of the nanotube VFETs are validated using 3D transport simulations. Furthermore, the nanotube VFETs fabricated on graphene films can be easily transferred onto flexible plastic substrates. The resulting components are reliable, exhibit high performance, and do not degrade significantly during testing.

19.
Nanotechnology ; 29(20): 205602, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29488899

ABSTRACT

We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

20.
Sci Rep ; 8(1): 1694, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374190

ABSTRACT

A novel characterization technique using both in situ reflection high-energy electron diffraction (RHEED) transmission mode and transmission electron microscopy (TEM) has been developed to investigate the growth behaviour of semiconductor nanostructures. RHEED employed in transmission mode enables the acquisition of structural information during the growth of nanostructures such as nanorods. Such real-time observation allows the investigation of growth mechanisms of various nanomaterials that is not possible with conventional ex situ analytical methods. Additionally, real-time monitoring by RHEED transmission mode offers a complete range of information when coupled with TEM, providing structural and chemical information with excellent spatial resolution, leading to a better understanding of the growth behaviour of nanomaterials. Here, as a representative study using the combined technique, the nucleation and crystallization of InAs nanorods and the epitaxial growth of InxGa1-xAs(GaAs) shell layers on InAs nanorods are explored. The structural changes in the InAs nanorods at the early growth stage caused by the transition of the local growth conditions and the strain relaxation processes that occur during epitaxial coating of the shell layers are shown. This technique advances our understanding of the growth behaviour of various nanomaterials, which allows the realization of nanostructures with novel properties and their application in future electronics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...