Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Front Vet Sci ; 11: 1417348, 2024.
Article in English | MEDLINE | ID: mdl-38933700

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that targets pig intestines to cause disease. It is globally widespread and causes huge economic losses to the pig industry. PEDV N protein is the protein that constitutes the core of PEDV virus particles, and most of it is expressed in the cytoplasm, and a small part can also be expressed in the nucleus. However, the role of related proteins in host nucleotide metabolic pathways in regulating PEDV replication have not been fully elucidated. In this study, PEDV-N-labeled antibodies were co-immunoprecipitated and combined with LC-MS to screen for host proteins that interact with N proteins. Bioinformatics analyses showed that the selected host proteins were mainly enriched in metabolic pathways. Moreover, co-immunoprecipitation and confocal microscopy confirmed that the second-largest subunit of RNA polymerase II (RPB2) and uridine phosphorylase 1 (UPP1) interacted with the N protein. RPB2 is the main subunit of RNA polymerase II and plays an important role in eukaryotic transcription. UPP1 is an enzyme that catalyzes reversible phosphorylation of uridine to uracil and ribo-1-phosphate to promote catabolism and bio anabolism. RPB2 overexpression significantly promoted viral replication, whereas UPP1 overexpression significantly inhibited viral replication. Studies on interactions between the PEDV N and host proteins are helpful in elucidating the pathogenesis and immune escape mechanism of PEDV.

2.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570774

ABSTRACT

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Coronavirus/genetics , Quercetin/pharmacology , Quercetin/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/veterinary , Swine Diseases/drug therapy
4.
Vet Res ; 55(1): 9, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225617

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Swine , Porcine respiratory and reproductive syndrome virus/metabolism , Protein Binding , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , RNA, Viral/metabolism , Zinc Fingers , Virus Replication
5.
Vet Microbiol ; 281: 109741, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37087878

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus belonging to the Arteriviridae family. Currently, the strain has undergone numerous mutations, bringing massive losses to the swine industry worldwide. Despite several studies had been conducted on PRRSV, the molecular mechanisms by which it causes infection remain unclear. Proliferating cell nuclear antigen (PCNA) is a sign of DNA damage and it participates in DNA replication and repair. Therefore, in this study, we investigated the potential role of PCNA in PRRSV infection. We observed that PCNA expression was stable after PRRSV infection in vitro; however, PCNA was translocated from the nucleus to the cytoplasm. Notably, we found the redistribution of PCNA from the nucleus to the cytoplasm in cells transfected with the N protein. PCNA silencing inhibited PRRSV replication and the synthesis of PRRSV shorter subgenomic RNA (sgmRNA) and genomic RNA (gRNA), while PCNA overexpression promoted virus replication and PRRSV shorter sgmRNA and gRNA synthesis. By performing immunoprecipitation and immunofluorescence colocalization, we confirmed that PCNA interacted with replication-related proteins, namely NSP9, NSP12, and N, but not with NSP10 and NSP11. Domain III of the N protein (41-72 aa) interacted with the IDCL domain of PCNA (118-135 aa). Therefore, we propose cytoplasmic transport of PCNA and its subsequent influence on PRRSV RNA synthesis could be a viral strategy for manipulating cell function, thus PCNA is a potential target to prevent and control PRRSV infection.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Genome, Viral , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Proliferating Cell Nuclear Antigen/genetics , RNA , Swine , Swine Diseases/genetics , Viral Nonstructural Proteins/genetics , Virus Replication/genetics , Subgenomic RNA/genetics
6.
Vet Microbiol ; 280: 109719, 2023 May.
Article in English | MEDLINE | ID: mdl-36940524

ABSTRACT

Swine influenza (SI) is widely prevalent in pig herds worldwide, causing huge economic losses to the pig industry and public health risks. The traditional inactivated swine influenza virus (SIV) vaccines are produced in chicken embryos, and egg-adaptive substitutions that occur during production process can impact vaccine effectiveness. Thus, developing an SI vaccine that can decrease the dependence on chicken embryos with a high immunogenicity is urgently needed. In this study, the utility of insect cell-derived SIV H1 and H3 bivalent virus-like particle (VLP) vaccines containing HA and M1 proteins of Eurasian avian-like (EA) H1N1 SIV and recent human-like H3N2 SIV were assessed in piglets. Antibody levels were monitored, and the protection efficacy of the vaccine after viral challenge was evaluated and compared with the inactivated vaccine. Results show that piglets produced high hemagglutination inhibition (HI) titers of antibodies against H1 and H3 SIV after immunization with SIV VLP vaccine. The neutralizing antibody level was significantly higher in SIV VLP vaccine than in the inactivated vaccine at 6 weeks post vaccination (p < 0.05). Furthermore, piglets immunized with the SIV VLP vaccine were protected against the challenge of H1 and H3 SIV, displaying inhibition of viral replication in piglets, and reduced lung damage. These results show that SIV VLP vaccine has good application prospects, thus laying the foundation for further research and commercialization of SIV VLP vaccine.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Vaccines, Virus-Like Particle , Chick Embryo , Animals , Humans , Swine , Influenza A Virus, H3N2 Subtype , Antibodies, Viral , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Vaccines, Inactivated
7.
J Virol ; 97(4): e0026423, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36943051

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.


Subject(s)
Interferon Type I , Porcine respiratory and reproductive syndrome virus , Proteasome Endopeptidase Complex , Viral Nonstructural Proteins , Gene Expression/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-beta/genetics , Lysosomes/metabolism , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/physiology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology , Protein Domains , Proteolysis , Swine , Ubiquitination , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Animals
8.
BMC Vet Res ; 18(1): 171, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35546407

ABSTRACT

BACKGROUND: Finding the key amino acid sites that could affect viral biological properties or protein functions has always been a topic of substantial interest in virology. The nucleocapsid (N) protein is one of the principal proteins of the porcine reproductive and respiratory syndrome virus (PRRSV) and plays a vital role in the virus life cycle. The N protein has only 123 or 128 amino acids, some of key amino acid sites which could affect the protein functions or impair the viral biological characteristics have been identified. In this research, our objective was to find out whether there are other novel amino acid sites of the N protein can affect N protein functions or PRRSV-2 replication. RESULTS: In this study, we found mutated the serine78 and serine 99of the nucleocapsid (N) protein can reduce the N-induced expression of IL-10 mRNA; Then, by using reverse genetics system, we constructed and rescued the mutant viruses, namely, A78 and A99.The IFA result proved that the mutations did not affect the rescue of the PRRSV-2. However, the results of the multistep growth kinetics and qPCR assays indicated that, compared with the viral replication ability, the titres and gRNA levels of A78 were significantly decreased compared with the wild-type. Further study showed that a single amino acid change from serine to alanine at position 78 of the N protein could abrogates the level of viral genomic and subgenomic RNAs. It means the mutation could significant decrease the viral replication efficiency in vitro. CONCLUSIONS: Our results suggest that the serine78 of N protein is a key site which could affect the N protein function and PRRSV replication ability.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Cell Line , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Viral/genetics , Serine/chemistry , Swine , Virus Replication/physiology
9.
Front Vet Sci ; 9: 886058, 2022.
Article in English | MEDLINE | ID: mdl-35619609

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate immune response in the host, reducing and delaying neutralizing antibody production against PRRSV infection and promoting viral infection. Here, we aimed to assess the potential of Panax notoginseng saponins (PNS) for improving the immune response exerted upon PRRSV-2-modified live virus (MLV) vaccine administration. Thirty piglets were randomly divided into six groups. Group 1 piglets were injected with medium 0 days post vaccination (dpv). Group 2 piglets were fed PNS 0-28 dpv. Group 3 and group 4 piglets were administered the JXA1-R vaccine 0 dpv. Group 4 piglets were also fed PNS 0-28 dpv. Group 1-4 piglets were challenged intranasally with the PRRSV JXA1 strain 28 dpv. Group 5 piglets were fed with PNS without challenge. Group 6 piglets served as controls. During the experiment, the samples were collected regularly for 49 days. Compared with group 1 piglets, group 3 piglets showed significantly reduced viremia and clinical scores, and significantly increased average daily gain (ADWG). Compared with group 3 piglets, group 4 piglets showed significantly improved neutralizing antibody titers, IFN-α and IFN-ß mRNA expression, and significantly decreased viremia and viral load in the lungs and lymph nodes, but did not demonstrate any further improvement in PRRSV-specific antibody titer, rectal temperature, ADWG, or clinical scores. PNS upregulates neutralizing antibodies against PRRSV-2 and enhances the expression of IFN-α and IFN-ß, which may reduce PRRSV viremia upon PRRSV-2 MLV vaccine administration. PNS may serve as an effective immunomodulator for boosting the immune defense against PRRSV.

10.
Vet Microbiol ; 266: 109370, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35217323

ABSTRACT

Eurasian avian-like (EA) H1N1 swine influenza viruses (SIVs) are currently the most prevalent SIVs in Chinese swine populations, but recent human-like H3N2 SIV subtypes have also been frequently isolated. Hence, there is an urgent need to develop an effective vaccine against both EA H1N1 and recent human-like H3N2 infections. In this study, we utilized the baculovirus expression system to produce virus-like particles (VLPs) containing hemagglutinin protein (HA) and matrix protein (M1) based on A/Swine/Guangdong/YJ4/2014 (H1N1) and A/swine/Guangdong/L22/2010 (H3N2). An immunological experiment showed that in a mouse model, bivalent VLP vaccines against H1N1 and H3N2 can induce stronger humoral and cellular immune responses than whole influenza virus vaccines. Compared with monovalent inactivated vaccines that cannot offer protection against different SIV subtypes, monovalent H1N1 or H3N2 VLP vaccines can provide partial protection against lethal challenge by viruses of different subtypes. Meanwhile, bivalent VLP vaccines against H1N1 and H3N2 can provide full protection against lethal doses of homologous and heterologous viruses belonging to the EA H1N1 or recent human-like H3N2 lineage. These results suggest a promising approach to the development of vaccines against SIVs.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Rodent Diseases , Animals , Antibodies, Viral , Humans , Influenza A Virus, H3N2 Subtype , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Swine , Vaccines, Inactivated
11.
Front Vet Sci ; 8: 766533, 2021.
Article in English | MEDLINE | ID: mdl-34888376

ABSTRACT

In 2018, there was an outbreak of African swine fever (ASF) in China, which spread to other provinces in the following 3 years and severely damaged China's pig industry. ASF is caused by the African swine fever virus (ASFV). Given that the genome of the African swine fever virus is very complex and whole genome information is currently inadequate, it is important to efficiently obtain virus genome sequences for genomic and epidemiological studies. The prevalent ASFV strains have low genetic variability; therefore, whole genome sequencing analysis provides a basis for the study of ASFV. We provide a method for the efficient sequencing of whole genomes, which requires only a small number of tissues. The database construction method was selected according to the genomic types of ASFV, and the whole ASFV genome was obtained through data filtering, host sequence removal, virus classification, data assembly, virus sequence identification, statistical analysis, gene prediction, and functional analysis. Our proposed method will facilitate ASFV genome sequencing and novel virus discovery.

12.
Vet Microbiol ; 253: 108847, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33360319

ABSTRACT

Swine influenza viruses not only constitute a potential economic problem for livestock, but also pose a substantial threat to human health. Mutation in the proteolytic cleavage site of hemagglutinin (HA) is recognized as an essential factor of tissue tropism and viral pathogenicity. However, the molecular properties of the cleavage site of Eurasian avian-like swine (EA) H1N2 virus remain largely unknown. In this study, we found a serine-leucine (Ser-Leu) substitution at the P2 position of the HA cleavage site (S328 L) in naturally occurring EA H1N2 virus. To study the effect of this substitution, we used reverse genetics to generate recombinant wild-type and mutant viruses containing a single amino acid mutation at the P2 position in A/swine/Guangdong/YJ28/2014 (YJ28) or A/swine/Guangdong/DG2/2015 (DG2) background. In vitro experiments showed that the Ser-Leu substitution at the P2 position attenuated the viral replication and HA cleavage efficiency. In vivo analyses revealed that, while all mice inoculated with r/DG2-S328 L or r/YJ28 viruses survived, the survival rates of r/DG2- and r/YJ28-L328S-inoculated animals were 20 % and 40 %, respectively. Furthermore, the Ser-Leu substitution at the P2 position attenuated the replication in nasal turbinate and lungs. In summary, this amino acid change may be useful to understand the molecular properties of the cleavage site and be valuable for vaccine development.


Subject(s)
Amino Acid Substitution , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N2 Subtype/pathogenicity , Leucine/metabolism , Orthomyxoviridae Infections/veterinary , Serine/metabolism , Virus Replication/genetics , A549 Cells , Animals , Asia , Chlorocebus aethiops , Dogs , Europe , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N2 Subtype/classification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/growth & development , Influenza, Human/virology , Leucine/genetics , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , Serine/genetics , Vero Cells , Virulence
13.
Viruses ; 12(1)2020 01 02.
Article in English | MEDLINE | ID: mdl-31906472

ABSTRACT

The Eurasian avian-like swine (EA) H1N1 virus has affected the Chinese swine industry, and human infection cases have been reported occasionally. However, little is known about the pathogenic mechanism of EA H1N1 virus. In this study, we compared the mouse pathogenicity of A/swine/Guangdong/YJ4/2014 (YJ4) and A/swine/Guangdong/MS285/2017 (MS285) viruses, which had similar genotype to A/Hunan/42443/2015 (HuN-like). None of the mice inoculated with 106 TCID50 of YJ4 survived at 7 days post infection, while the survival rate of the MS285 group was 100%. Therefore, a series of single fragment reassortants in MS285 background and two rescued wild-type viruses were generated by using the reverse genetics method, and the pathogenicity analysis revealed that the PB2 gene contributed to the high virulence of YJ4 virus. Furthermore, there were 11 amino acid differences in PB2 between MS285 and YJ4 identified by sequence alignment, and 11 single amino acid mutant viruses were generated in the MS285 background. We found that the R251K mutation significantly increased the virulence of MS285 in mice, contributed to high polymerase activity and enhanced viral genome transcription and replication. These results indicate that PB2-R251K contributes to the virulence of the EA H1N1 virus and provide new insight into future molecular epidemiological surveillance strategies.


Subject(s)
Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Virus Replication/genetics , A549 Cells , Amino Acid Substitution , Animals , Dogs , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Virulence/genetics
14.
Viruses ; 11(11)2019 11 10.
Article in English | MEDLINE | ID: mdl-31717616

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a huge threat to the modern pig industry, and current vaccine prevention strategies could not provide full protection against it. Therefore, exploring new anti-PRRSV strategies is urgently needed. Ginsenoside Rg1, derived from ginseng and notoginseng, is shown to exert anti-inflammatory, neuronal apoptosis-suppressing and anti-oxidant effects. Here we demonstrate Rg1-inhibited PRRSV infection both in Marc-145 cells and porcine alveolar macrophages (PAMs) in a dose-dependent manner. Rg1 treatment affected multiple steps of the PRRSV lifecycle, including virus attachment, replication and release at concentrations of 10 or 50 µM. Meanwhile, Rg1 exhibited broad inhibitory activities against Type 2 PRRSV, including highly pathogenic PRRSV (HP-PRRSV) XH-GD and JXA1, NADC-30-like strain HNLY and classical strain VR2332. Mechanistically, Rg1 reduced mRNA levels of the pro-inflammatory cytokines, including IL-1ß, IL-8, IL-6 and TNF-α, and decreased NF-κB signaling activation triggered by PRRSV infection. Furthermore, 4-week old piglets intramuscularly treated with Rg1 after being challenged with the HP-PRRSV JXA1 strain display moderate lung injury, decreased viral load in serum and tissues, and an improved survival rate. Collectively, our study provides research basis and supportive clinical data for using Ginsenoside Rg1 in PRRSV therapies in swine.


Subject(s)
Ginsenosides/pharmacology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine respiratory and reproductive syndrome virus/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Cytokines/drug effects , Cytokines/metabolism , Inflammation/drug therapy , Macrophages, Alveolar/virology , NF-kappa B/drug effects , NF-kappa B/metabolism , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/pathology , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/pathogenicity , Signal Transduction/drug effects , Swine , Swine Diseases/drug therapy , Swine Diseases/immunology , Swine Diseases/pathology , Viral Load/drug effects , Virus Replication/drug effects
15.
Vet Microbiol ; 231: 226-231, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30955814

ABSTRACT

The porcine respiratory and reproductive syndrome virus (PRRSV) nucleocapsid (N) protein is a multiphosphorylated protein.It has been proved that the phosphorylation of N protein could regulate the growth ability of PRRSV in Marc-145 cells. However, further investigation is needed to determine whether phosphorylation of the N protein could affect PRRSV virulence in piglets. In this study, we confirmed that the mutations could impair PRRSV replication ability in porcine primary macrophages (PAMs) as they did in Marc-145 cells. The animal experiments suggested that the pathogenicity of the mutated virus (A105-120) was significantly reduced compared with parent strain (XH-GD). Our results suggested that the phosphorylation of the N protein contributes to virus replication and virulence. This study is the first to identify a specific modification involved in PRRSV pathogenicity. Mutation of PTMs sites is also a novel way to attenuate PRRSV virulence. The mutations could be a marker in a vaccine. In conclusion, our study will improve our understanding of the molecular mechanisms of PRRSV pathogenicity.


Subject(s)
Mutation , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/pathogenicity , Virulence/genetics , Animals , Cell Line , DNA Replication , Nucleocapsid Proteins/chemistry , Phosphorylation , Porcine Reproductive and Respiratory Syndrome/pathology , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Viral/genetics , Swine , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL