Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Phys Med Biol ; 69(11)2024 May 14.
Article in English | MEDLINE | ID: mdl-38636505

ABSTRACT

Objective.Pharmacokinetic parametric images obtained through dynamic fluorescence molecular tomography (DFMT) has ability of capturing dynamic changes in fluorescence concentration, thereby providing three-dimensional metabolic information for applications in biological research and drug development. However, data processing of DFMT is time-consuming, involves a vast amount of data, and the problem itself is ill-posed, which significantly limits the application of pharmacokinetic parametric images reconstruction. In this study, group sparse-based Taylor expansion method is proposed to address these problems.Approach.Firstly, Taylor expansion framework is introduced to reduce time and computational cost. Secondly, group sparsity based on structural prior is introduced to improve reconstruction accuracy. Thirdly, alternating iterative solution based on accelerated gradient descent algorithm is introduced to solve the problem.Main results.Numerical simulation andin vivoexperimental results demonstrate that, in comparison to existing methods, the proposed approach significantly enhances reconstruction speed without a degradation of quality, particularly when confronted with background fluorescence interference from other organs.Significance.Our research greatly reduces time and computational cost, providing strong support for real-time monitoring of liver metabolism.


Subject(s)
Image Processing, Computer-Assisted , Liver , Liver/diagnostic imaging , Liver/metabolism , Image Processing, Computer-Assisted/methods , Animals , Tomography/methods , Mice , Optical Imaging/methods , Algorithms , Fluorescence
2.
Biomed Opt Express ; 15(3): 1910-1925, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495688

ABSTRACT

Diffuse optical tomography (DOT) employs near-infrared light to reveal the optical parameters of biological tissues. Due to the strong scattering of photons in tissues and the limited surface measurements, DOT reconstruction is severely ill-posed. The Levenberg-Marquardt (LM) is a popular iteration method for DOT, however, it is computationally expensive and its reconstruction accuracy needs improvement. In this study, we propose a neural model based iteration algorithm which combines the graph neural network with Levenberg-Marquardt (GNNLM), which utilizes a graph data structure to represent the finite element mesh. In order to verify the performance of the graph neural network, two GNN variants, namely graph convolutional neural network (GCN) and graph attention neural network (GAT) were employed in the experiments. The results showed that GCNLM performs best in the simulation experiments within the training data distribution. However, GATLM exhibits superior performance in the simulation experiments outside the training data distribution and real experiments with breast-like phantoms. It demonstrated that the GATLM trained with simulation data can generalize well to situations outside the training data distribution without transfer training. This offers the possibility to provide more accurate absorption coefficient distributions in clinical practice.

3.
J Biophotonics ; 17(5): e202300480, 2024 May.
Article in English | MEDLINE | ID: mdl-38351740

ABSTRACT

Fluorescence molecular tomography (FMT), as a promising technique for early tumor detection, can non-invasively visualize the distribution of fluorescent marker probe three-dimensionally. However, FMT reconstruction is a severely ill-posed problem, which remains an obstacle to wider application of FMT. In this paper, a two-step reconstruction framework was proposed for FMT based on the energy statistical probability. First, the tissue structural information obtained from computed tomography (CT) is employed to associate the tissue optical parameters for rough solution in the global region. Then, according to the global-region reconstruction results, the probability that the target belongs to each region can be calculated. The region with the highest probability is delineated as region of interest to realize accurate and fast source reconstruction. Numerical simulations and in vivo experiments were carried out to evaluate the effectiveness of the proposed framework. The encouraging results demonstrate the significant effectiveness and potential of our method for practical FMT applications.


Subject(s)
Image Processing, Computer-Assisted , Probability , Tomography , Image Processing, Computer-Assisted/methods , Animals , Optical Imaging , Mice , Fluorescence
4.
Article in English | MEDLINE | ID: mdl-38082877

ABSTRACT

X-ray luminescence computed tomography (XLCT) is an emerging molecular imaging technique for biological application. However, it is still a challenge to get a stable and accurate solution of the reconstruction of XLCT. This paper presents a regularization parameter selection strategy based on incomplete variables frame for XLCT. A residual information, which is derived from Karush-Kuhn-Tucker (KKT) equivalent condition, is employed to determine the regularization parameter. This residual contains the relevant information about the solution norm and gradient norm, which improved the recovered results. Simulation and phantom experiments are designed to test the performance of the algorithm.Clinical Relevance- The results have not yet been used in clinical relevance currently, we believed that this strategy will facilitate the development of the preclinical applications in FMT.


Subject(s)
Image Processing, Computer-Assisted , Luminescence , X-Rays , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Computer Simulation
5.
Article in English | MEDLINE | ID: mdl-38083170

ABSTRACT

Fluorescence molecular tomography (FMT) is a highly sensitive and noninvasive optical imaging technique which has been widely applied to disease diagnosis and drug discovery. However, FMT reconstruction is a highly ill-posed problem. In this work, L0-norm regularization is employed to construct the mathematical model of the inverse problem of FMT. And an adaptive sparsity orthogonal least square with a neighbor strategy (ASOLS-NS) is proposed to solve this model. This algorithm can provide an adaptive sparsity and can establish the candidate sets by a novel neighbor expansion strategy for the orthogonal least square (OLS) algorithm. Numerical simulation experiments have shown that the ASOLS-NS improves the reconstruction of images, especially for the double targets reconstruction.Clinical relevance- The purpose of this work is to improve the reconstruction results of FMT. Current experiments are focused on simulation experiments, and the proposed algorithm will be applied to the clinical tumor detection in the future.


Subject(s)
Image Processing, Computer-Assisted , Tomography , Image Processing, Computer-Assisted/methods , Least-Squares Analysis , Tomography/methods , Optical Imaging/methods , Computer Simulation
6.
Article in English | MEDLINE | ID: mdl-38083596

ABSTRACT

Non-linear least square minimization algorithms are often employed to solve Diffuse Optical Tomography (DOT) inverse problem. However, it is time-consuming to calculate the Jacobian matrix. This work has proposed a data-driven neural network method to improve computational efficiency. The singular value decomposition is employed to compute the updated Jacobian and a mapping from boundary measurements to the singular values based on a convolutional neural network (CNN) is learned to obtain the singular values. The method is validated with 3D numerical simulation data. We have demonstrated that the approach can save computation time compared to Adjoint method, and reconstructed absorption coefficient close to Adjoint method.Clinical Relevance- These results are not focused on clinical relevance currently, but in the future may be helpful to accelerant DOT reconstruction in clinic.


Subject(s)
Tomography, Optical , Tomography, Optical/methods , Neural Networks, Computer , Computer Simulation , Algorithms , Time Factors
7.
Phys Med Biol ; 68(19)2023 09 19.
Article in English | MEDLINE | ID: mdl-37647921

ABSTRACT

Objective.Fluorescence molecular tomography (FMT) is an optical imaging modality that provides high sensitivity and low cost, which can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labeled probe noninvasively. In the field of preclinical cancer diagnosis and treatment, FMT has gained significant traction. Nonetheless, the current FMT reconstruction results suffer from unsatisfactory morphology and location accuracy of the fluorescence distribution, primarily due to the light scattering effect and the ill-posed nature of the inverse problem.Approach.To address these challenges, a regularized reconstruction method based on joint smoothly clipped absolute deviation regularization and graph manifold learning (SCAD-GML) for FMT is presented in this paper. The SCAD-GML approach combines the sparsity of the fluorescent sources with the latent manifold structure of fluorescent source distribution to achieve more accurate and sparse reconstruction results. To obtain the reconstruction results efficiently, the non-convex gradient descent iterative method is employed to solve the established objective function. To assess the performance of the proposed SCAD-GML method, a comprehensive evaluation is conducted through numerical simulation experiments as well asin vivoexperiments.Main results.The results demonstrate that the SCAD-GML method outperforms other methods in terms of both location and shape recovery of fluorescence biomarkers distribution.Siginificance.These findings indicate that the SCAD-GML method has the potential to advance the application of FMT inin vivobiological research.


Subject(s)
Optical Imaging , Computer Simulation
8.
Opt Express ; 31(15): 24845-24861, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475302

ABSTRACT

As a dual-modal imaging technology that has emerged in recent years, cone-beam X-ray luminescence computed tomography (CB-XLCT) has exhibited promise as a tool for the early three-dimensional detection of tumors in small animals. However, due to the challenges imposed by the low absorption and high scattering of light in tissues, the CB-XLCT reconstruction problem is a severely ill-conditioned inverse problem, rendering it difficult to obtain satisfactory reconstruction results. In this study, a strategy that utilizes dictionary learning and group structure (DLGS) is proposed to achieve satisfactory CB-XLCT reconstruction performance. The group structure is employed to account for the clustering of nanophosphors in specific regions within the organism, which can enhance the interrelation of elements in the same group. Furthermore, the dictionary learning strategy is implemented to effectively capture sparse features. The performance of the proposed method was evaluated through numerical simulations and in vivo experiments. The experimental results demonstrate that the proposed method achieves superior reconstruction performance in terms of location accuracy, target shape, robustness, dual-source resolution, and in vivo practicability.

9.
J Biomed Opt ; 28(6): 066005, 2023 06.
Article in English | MEDLINE | ID: mdl-37396685

ABSTRACT

Significance: Fluorescence molecular tomography (FMT) is a promising imaging modality, which has played a key role in disease progression and treatment response. However, the quality of FMT reconstruction is limited by the strong scattering and inadequate surface measurements, which makes it a highly ill-posed problem. Improving the quality of FMT reconstruction is crucial to meet the actual clinical application requirements. Aim: We propose an algorithm, neighbor-based adaptive sparsity orthogonal least square (NASOLS), to improve the quality of FMT reconstruction. Approach: The proposed NASOLS does not require sparsity prior information and is designed to efficiently establish a support set using a neighbor expansion strategy based on the orthogonal least squares algorithm. The performance of the algorithm was tested through numerical simulations, physical phantom experiments, and small animal experiments. Results: The results of the experiments demonstrated that the NASOLS significantly improves the reconstruction of images according to indicators, especially for double-target reconstruction. Conclusion: NASOLS can recover the fluorescence target with a good location error according to simulation experiments, phantom experiments and small mice experiments. This method is suitable for sparsity target reconstruction, and it would be applied to early detection of tumors.


Subject(s)
Image Processing, Computer-Assisted , Tomography , Animals , Mice , Image Processing, Computer-Assisted/methods , Fluorescence , Least-Squares Analysis , Tomography/methods , Computer Simulation , Phantoms, Imaging , Algorithms
10.
Opt Express ; 31(11): 18128-18146, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381530

ABSTRACT

Fluorescence molecular tomography (FMT) is an optical imaging technology with the ability of visualizing the three-dimensional distribution of fluorescently labelled probes in vivo. However, due to the light scattering effect and ill-posed inverse problems, obtaining satisfactory FMT reconstruction is still a challenging problem. In this work, to improve the performance of FMT reconstruction, we proposed a generalized conditional gradient method with adaptive regularization parameters (GCGM-ARP). In order to make a tradeoff between the sparsity and shape preservation of the reconstruction source, and to maintain its robustness, elastic-net (EN) regularization is introduced. EN regularization combines the advantages of L1-norm and L2-norm, and overcomes the shortcomings of traditional Lp-norm regularization, such as over-sparsity, over-smoothness, and non-robustness. Thus, the equivalent optimization formulation of the original problem can be obtained. To further improve the performance of the reconstruction, the L-curve is adopted to adaptively adjust the regularization parameters. Then, the generalized conditional gradient method (GCGM) is used to split the minimization problem based on EN regularization into two simpler sub-problems, which are determining the direction of the gradient and the step size. These sub-problems are addressed efficiently to obtain more sparse solutions. To assess the performance of our proposed method, a series of numerical simulation experiments and in vivo experiments were implemented. The experimental results show that, compared with other mathematical reconstruction methods, GCGM-ARP method has the minimum location error (LE) and relative intensity error (RIE), and the maximum dice coefficient (Dice) in the case of different sources number or shape, or Gaussian noise of 5%-25%. This indicates that GCGM-ARP has superior reconstruction performance in source localization, dual-source resolution, morphology recovery, and robustness. In conclusion, the proposed GCGM-ARP is an effective and robust strategy for FMT reconstruction in biomedical application.

11.
Comput Methods Programs Biomed ; 234: 107503, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37015182

ABSTRACT

BACKGROUND AND OBJECTIVE: Fluorescence molecular tomography (FMT) is a non-invasive molecular imaging modality that can be used to observe the three-dimensional distribution of fluorescent probes in vivo. FMT is a promising imaging technique in clinical and preclinical research that has attracted significant attention. Numerous regularization based reconstruction algorithms have been proposed. However, traditional algorithms that use the squared l2-norm distance usually exaggerate the influence of noise and measurement and calculation errors, and their robustness cannot be guaranteed. METHODS: In this study, we propose a novel robust transformed l1 (TL1) metric that interpolates l0 and l1 norms through a nonnegative parameter α∈(0,+∞). The TL1 metric looks like the lp-norm with p∈(0,1). These are markedly different because TL1 metric has two properties, boundedness and Lipschitz-continuity, which make the TL1 criterion suitable distance metric, particularly for robustness, owing to its stronger noise suppression. Subsequently, we apply the proposed metric to FMT and build a robust model to reduce the influence of noise. The nonconvexity of the proposed model made direct optimization difficult, and a continuous optimization method was developed to solve the model. The problem was converted into a difference in convex programming problem for the TL1 metric (DCATL1), and the corresponding algorithm converged linearly. RESULTS: Various numerical simulations and in vivo bead-implanted mouse experiments were conducted to verify the performance of the proposed method. The experimental results show that the DCATL1 algorithm is more robust than the state-of-the-art approaches and achieves better source localization and morphology recovery. CONCLUSIONS: The in vivo experiments showed that DCATL1 can be used to visualize the distribution of fluorescent probes inside biological tissues and promote preclinical application in small animals, demonstrating the feasibility and effectiveness of the proposed method.


Subject(s)
Fluorescent Dyes , Tomography , Animals , Mice , Fluorescence , Tomography/methods , Algorithms , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
12.
Phys Med Biol ; 67(21)2022 10 27.
Article in English | MEDLINE | ID: mdl-36220011

ABSTRACT

Objective.Bioluminescence tomography (BLT) is a promising non-invasive optical medical imaging technique, which can visualize and quantitatively analyze the distribution of tumor cells in living tissues. However, due to the influence of photon scattering effect and ill-conditioned inverse problem, the reconstruction result is unsatisfactory. The purpose of this study is to improve the reconstruction performance of BLT.Approach.An alternating Bregman proximity operators (ABPO) method based on TVSCAD regularization is proposed for BLT reconstruction. TVSCAD combines the anisotropic total variation (TV) regularization constraints and the non-convex smoothly clipped absolute deviation (SCAD) penalty constraints, to make a trade-off between the sparsity and edge preservation of the source. ABPO approach is used to solve the TVSCAD model (ABPO-TVSCAD for short). In addition, to accelerate the convergence speed of the ABPO, we adapt the strategy of shrinking the permission source region, which further improves the performance of ABPO-TVSCAD.Main results.The results of numerical simulations andin vivoxenograft mouse experiment show that our proposed method achieved superior accuracy in spatial localization and morphological reconstruction of bioluminescent source.Significance.ABPO-TVSCAD is an effective and robust reconstruction method for BLT, and we hope that this method can promote the development of optical molecular tomography.


Subject(s)
Algorithms , Tomography, Optical , Animals , Mice , Luminescent Measurements , Tomography/methods , Tomography, Optical/methods , Tomography, X-Ray Computed , Phantoms, Imaging
13.
Opt Express ; 30(20): 35282-35299, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258483

ABSTRACT

Cerenkov luminescence tomography (CLT) provides a powerful optical molecular imaging technique for non-invasive detection and visualization of radiopharmaceuticals in living objects. However, the severe photon scattering effect causes ill-posedness of the inverse problem, and the location accuracy and shape recovery of CLT reconstruction results are unsatisfactory for clinical application. Here, to improve the reconstruction spatial location accuracy and shape recovery ability, a non-negative iterative three operator splitting (NNITOS) strategy based on elastic net (EN) regularization was proposed. NNITOS formalizes the CLT reconstruction as a non-convex optimization problem and splits it into three operators, the least square, L1/2-norm regularization, and adaptive grouping manifold learning, then iteratively solved them. After stepwise iterations, the result of NNITOS converged progressively. Meanwhile, to speed up the convergence and ensure the sparsity of the solution, shrinking the region of interest was utilized in this strategy. To verify the effectiveness of the method, numerical simulations and in vivo experiments were performed. The result of these experiments demonstrated that, compared to several methods, NNITOS can achieve superior performance in terms of location accuracy, shape recovery capability, and robustness. We hope this work can accelerate the clinical application of CLT in the future.


Subject(s)
Image Processing, Computer-Assisted , Luminescence , Image Processing, Computer-Assisted/methods , Radiopharmaceuticals , Tomography , Tomography, X-Ray Computed , Algorithms , Phantoms, Imaging
14.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): 829-840, 2022 May 01.
Article in English | MEDLINE | ID: mdl-36215444

ABSTRACT

As a promising noninvasive medical imaging technique, bioluminescence tomography (BLT) dynamically offers three-dimensional visualization of tumor distribution in living animals. However, due to the high ill-posedness caused by the strong scattering property of biological tissues and the limited boundary measurements with noise, BLT reconstruction still cannot meet actual preliminary clinical application requirements. In our research, to recover 3D tumor distribution quickly and precisely, an adaptive Newton hard thresholding pursuit (ANHTP) algorithm is proposed to improve the performance of BLT. The ANHTP algorithm fully combines the advantages of sparsity constrained optimization and convex optimization to guarantee global convergence. More precisely, an adaptive sparsity adjustment strategy was developed to obtain the support set of the inverse system matrix. Based on the strong Wolfe line search criterion, a modified damped Newton algorithm was constructed to obtain optimal source distribution information. A series of numerical simulations and phantom and in vivo experiments show that ANHTP has high reconstruction accuracy, fast reconstruction speed, and good robustness. Our proposed algorithm can further increase the practicality of BLT in biomedical applications.


Subject(s)
Luminescent Measurements , Tomography , Algorithms , Animals , Luminescent Measurements/methods , Phantoms, Imaging , Tomography/methods
15.
Eur Radiol ; 32(10): 6922-6932, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35674824

ABSTRACT

OBJECTIVES: To evaluate the value of deep learning (DL) combining multimodal radiomics and clinical and imaging features for differentiating ocular adnexal lymphoma (OAL) from idiopathic orbital inflammation (IOI). METHODS: Eighty-nine patients with histopathologically confirmed OAL (n = 39) and IOI (n = 50) were divided into training and validation groups. Convolutional neural networks and multimodal fusion layers were used to extract multimodal radiomics features from the T1-weighted image (T1WI), T2-weighted image, and contrast-enhanced T1WI. These multimodal radiomics features were then combined with clinical and imaging features and used together to differentiate between OAL and IOI. The area under the curve (AUC) was used to evaluate DL models with different features under five-fold cross-validation. The Student t-test, chi-squared, or Fisher exact test was used for comparison of different groups. RESULTS: In the validation group, the diagnostic AUC of the DL model using combined features was 0.953 (95% CI, 0.895-1.000), higher than that of the DL model using multimodal radiomics features (0.843, 95% CI, 0.786-0.898, p < 0.01) or clinical and imaging features only (0.882, 95% CI, 0.782-0.982, p = 0.13). The DL model built on multimodal radiomics features outperformed those built on most bimodalities and unimodalities (p < 0.05). In addition, the DL-based analysis with the orbital cone area (covering both the orbital mass and surrounding tissues) was superior to that with the region of interest (ROI) covering only the mass area, although the difference was not significant (p = 0.33). CONCLUSIONS: DL-based analysis that combines multimodal radiomics features with clinical and imaging features may help to differentiate between OAL and IOI. KEY POINTS: • It is difficult to differentiate OAL from IOI due to the overlap in clinical and imaging manifestations. • Radiomics has shown potential for noninvasive diagnosis of different orbital lymphoproliferative disorders. • DL-based analysis combining radiomics and imaging and clinical features may help the differentiation between OAL and IOI.


Subject(s)
Deep Learning , Eye Neoplasms , Lymphoma , Humans , Inflammation/diagnostic imaging , Lymphoma/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies
16.
Front Oncol ; 12: 768137, 2022.
Article in English | MEDLINE | ID: mdl-35251958

ABSTRACT

Bioluminescence tomography (BLT) is a promising in vivo molecular imaging tool that allows non-invasive monitoring of physiological and pathological processes at the cellular and molecular levels. However, the accuracy of the BLT reconstruction is significantly affected by the forward modeling errors in the simplified photon propagation model, the measurement noise in data acquisition, and the inherent ill-posedness of the inverse problem. In this paper, we present a new multispectral differential strategy (MDS) on the basis of analyzing the errors generated from the simplification from radiative transfer equation (RTE) to diffusion approximation and data acquisition of the imaging system. Through rigorous theoretical analysis, we learn that spectral differential not only can eliminate the errors caused by the approximation of RTE and imaging system measurement noise but also can further increase the constraint condition and decrease the condition number of system matrix for reconstruction compared with traditional multispectral (TM) reconstruction strategy. In forward simulations, energy differences and cosine similarity of the measured surface light energy calculated by Monte Carlo (MC) and diffusion equation (DE) showed that MDS can reduce the systematic errors in the process of light transmission. In addition, in inverse simulations and in vivo experiments, the results demonstrated that MDS was able to alleviate the ill-posedness of the inverse problem of BLT. Thus, the MDS method had superior location accuracy, morphology recovery capability, and image contrast capability in the source reconstruction as compared with the TM method and spectral derivative (SD) method. In vivo experiments verified the practicability and effectiveness of the proposed method.

17.
Opt Express ; 30(2): 1422-1441, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209303

ABSTRACT

Harnessing the power and flexibility of radiolabeled molecules, Cerenkov luminescence tomography (CLT) provides a novel technique for non-invasive visualisation and quantification of viable tumour cells in a living organism. However, owing to the photon scattering effect and the ill-posed inverse problem, CLT still suffers from insufficient spatial resolution and shape recovery in various preclinical applications. In this study, we proposed a total variation constrained graph manifold learning (TV-GML) strategy for achieving accurate spatial location, dual-source resolution, and tumour morphology. TV-GML integrates the isotropic total variation term and dynamic graph Laplacian constraint to make a trade-off between edge preservation and piecewise smooth region reconstruction. Meanwhile, the tetrahedral mesh-Cartesian grid pair method based on the k-nearest neighbour, and the adaptive and composite Barzilai-Borwein method, were proposed to ensure global super linear convergence of the solution of TV-GML. The comparison results of both simulation experiments and in vivo experiments further indicated that TV-GML achieved superior reconstruction performance in terms of location accuracy, dual-source resolution, shape recovery capability, robustness, and in vivo practicability. Significance: We believe that this novel method will be beneficial to the application of CLT for quantitative analysis and morphological observation of various preclinical applications and facilitate the development of the theory of solving inverse problem.


Subject(s)
Image Processing, Computer-Assisted/methods , Liver Neoplasms, Experimental/diagnostic imaging , Luminescent Measurements/methods , Positron-Emission Tomography/methods , Skin Neoplasms/diagnostic imaging , Urinary Bladder/diagnostic imaging , Algorithms , Animals , Computer Simulation , Fluorodeoxyglucose F18/administration & dosage , Imaging, Three-Dimensional/methods , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Radiopharmaceuticals/administration & dosage , Tomography, Optical/methods , Urinary Bladder/metabolism
18.
Biomed Opt Express ; 12(10): 5991-6012, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34745717

ABSTRACT

Fluorescence molecular tomography (FMT), which is used to visualize the three-dimensional distribution of fluorescence probe in small animals via the reconstruction method, has become a promising imaging technique in preclinical research. However, the classical reconstruction criterion is formulated based on the squared l 2-norm distance metric, leaving it prone to being influenced by the presence of outliers. In this study, we propose a robust distance based on the correntropy-induced metric with a Laplacian kernel (CIML). The proposed metric satisfies the conditions of distance metric function and contains first and higher order moments of samples. Moreover, we demonstrate important properties of the proposed metric such as nonnegativity, nonconvexity, and boundedness, and analyze its robustness from the perspective of M-estimation. The proposed metric includes and extends the traditional metrics such as l 0-norm and l 1-norm metrics by setting an appropriate parameter. We show that, in reconstruction, the metric is a sparsity-promoting penalty. To reduce the negative effects of noise and outliers, a novel robust reconstruction framework is presented with the proposed correntropy-based metric. The proposed CIML model retains the advantages of the traditional model and promotes robustness. However, the nonconvexity of the proposed metric renders the CIML model difficult to optimize. Furthermore, an effective iterative algorithm for the CIML model is designed, and we present a theoretical analysis of its ability to converge. Numerical simulation and in vivo mouse experiments were conducted to evaluate the CIML method's performance. The experimental results show that the proposed method achieved more accurate fluorescent target reconstruction than the state-of-the-art methods in most cases, which illustrates the feasibility and robustness of the CIML method.

19.
Front Oncol ; 11: 751055, 2021.
Article in English | MEDLINE | ID: mdl-34745977

ABSTRACT

Cerenkov luminescence tomography (CLT) is a promising non-invasive optical imaging method with three-dimensional semiquantitative in vivo imaging capability. However, CLT itself relies on Cerenkov radiation, a low-intensity radiation, making CLT reconstruction more challenging than other imaging modalities. In order to solve the ill-posed inverse problem of CLT imaging, some numerical optimization or regularization methods need to be applied. However, in commonly used methods for solving inverse problems, parameter selection significantly influences the results. Therefore, this paper proposed a probabilistic energy distribution density region scaling (P-EDDRS) framework. In this framework, multiple reconstruction iterations are performed, and the Cerenkov source distribution of each reconstruction is treated as random variables. According to the spatial energy distribution density, the new region of interest (ROI) is solved. The size of the region required for the next operation was determined dynamically by combining the intensity characteristics. In addition, each reconstruction source distribution is given a probability weight value, and the prior probability in the subsequent reconstruction is refreshed. Last, all the reconstruction source distributions are weighted with the corresponding probability weights to get the final Cerenkov source distribution. To evaluate the performance of the P-EDDRS framework in CLT, this article performed numerical simulation, in vivo pseudotumor model mouse experiment, and breast cancer mouse experiment. Experimental results show that this reconstruction framework has better positioning accuracy and shape recovery ability and can optimize the reconstruction effect of multiple algorithms on CLT.

20.
Phys Med Biol ; 66(19)2021 09 24.
Article in English | MEDLINE | ID: mdl-34492648

ABSTRACT

Objective. X-ray luminescence computed tomography (XLCT) has played a crucial role in pre-clinical research and effective diagnosis of disease. However, due to the ill-posed of the XLCT inverse problem, the generalization of reconstruction methods and the selection of appropriate regularization parameters are still challenging in practical applications. In this research, an robust Elastic net-ℓ1ℓ2reconstruction method is proposed aiming to the challenge.Approach. Firstly, our approach consists of ℓ1and ℓ2regularization to enhance the sparsity and suppress the smoothness. Secondly, through optimal approximation of the optimization problem, double modification of Landweber algorithm is adopted to solve the Elastic net-ℓ1ℓ2regulazation. Thirdly, drawing on the ideal of supervised learning, multi-parameter K-fold cross validation strategy is proposed to determin the optimal parameters adaptively.Main results. To evaluate the performance of the Elastic net-ℓ1ℓ2method, numerical simulations, phantom and in vivo experiments were conducted. In these experiments, the Elastic net-ℓ1ℓ2method achieved the minimum reconstruction error (with smallest location error, fluorescent yield relative error, normalized root-mean-square error) and the best image reconstruction quality (with largest contrast-to-noise ratio and Dice similarity) among all methods. The results demonstrated that Elastic net-ℓ1ℓ2can obtain superior reconstruction performance in terms of location accuracy, dual source resolution, robustness and in vivo practicability.Significance. It is believed that this study will further benefit preclinical applications with a view to provide a more reliable reference for the later researches on XLCT.


Subject(s)
Image Processing, Computer-Assisted , Luminescence , Algorithms , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography, X-Ray Computed , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL