Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990512

ABSTRACT

Chemically synthesized PEDOT (poly(3,4-ethylenedioxythiophene)) nanomaterials, with various nanostructured morphologies as well as different intrinsic electrical conductivities and crystallinities, were compared as electrocatalysts for Co(III) reduction in dye-sensitized solar cells (DSSCs). Electrochemical parameters, charge transfer resistance toward the electrode/electrolyte interface, catalytic activity for Co(III)-reduction, and diffusion of cobalt redox species greatly depend on the morphology, crystallinity, and intrinsic electrical conductivity of the chemically synthesized PEDOTs and optimization of the fabrication procedure for counter electrodes. The PEDOT counter electrode, fabricated by spin coating a DMSO-dispersed PEDOT solution with an ordered 1D structure and nanosized fibers averaging 70 nm in diameter and an electrical conductivity of ∼16 S cm-1, exhibits the lowest charge transfer resistance, highest diffusion for a cobalt redox mediator and superior electrocatalytic performance compared to a traditional Pt-counter electrode. The photovoltaic performance of the DSSC using chemically synthesized PEDOT exceeds that of a Pt-electrode device because of the enhanced current density, which is directly related to the superior electrocatalytic ability of PEDOT for Co(III)-reduction. This simple spin-coated counter electrode prepared using cheap and scalable chemically synthesized PEDOT can be a potential alternative to the expensive Pt-counter electrode for cobalt and other redox electrolytes in DSSCs and various flexible electronic devices.

2.
Small Methods ; : e2400363, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803311

ABSTRACT

Metal-organic frameworks (MOFs) are crystalline extended structures featuring permanent porosity, assembled from metal ions and organic ligands, often synthesized by the solvothermal method (50-260 °C, 12-72 h). Here, an alternative synthetic approach-solvent-induced structural rearrangement in ultrasound-assisted synthesis is presented. Six representative Zn-based MOFs, each composed of distinct secondary building units, are synthesized within 2-180 min consuming less solvent (>0.03 m) at room temperature. It is observed that ultrasonication induces the construction of a coordination network, and subsequent solvent exchange triggers structural rearrangement to yield MOFs of high crystallinity and porosity. Furthermore, the scalability of this method is demonstrated through the bulk synthesis of MOF-5, MOF-74, ZIF-8, and MFU-4l within 90 min. The initiation of nucleation through ultrasound and the subsequent transformation induced by solvent exchange offer an alternative method for efficiently synthesizing MOFs in bulk, potentially broadening their range of applications.

3.
Adv Mater ; 35(4): e2203791, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35853171

ABSTRACT

The electrochemical conversion of small molecules, such as CO2 , O2 , and H2 O, has received significant attention as a potential engine for sustainable life. Metal-organic frameworks (MOFs) are a promising class of electrocatalytic materials for such processes. An attractive aspect of utilizing this class of materials as electrocatalysts is that well-known molecular active sites can be introduced to well-defined crystalline heterogeneous catalytic systems with high tunability. This review offers strategic insights into recent studies on MOF-based electrocatalysts by discussing the notable active sites that have been utilized in both homogeneous and heterogeneous catalysts, while highlighting instances where such active sites have been introduced into MOFs. In addition, material design principles enabling the integration of electrochemically active components with the MOF platform are outlined. Viewpoints on the viability of MOFs as an alternative to currently used electrocatalysts are also discussed. Finally, the future direction of MOF-based electrocatalysis research is established.

4.
Nanoscale ; 12(27): 14903-14910, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32638785

ABSTRACT

Electrochemical oxidation processes can affect the electronic structure and activate the catalytic performance of precious-metal and transition-metal based catalysts for the oxygen evolution reaction (OER). Also there are emerging requirements to develop OER electrocatalysts under various pH conditions in order to couple with different reduction reactions. Herein, we studied the effect of pH on the electroactivation of IrNi alloy nanoparticles supported on carbon (IrNi/C) and evaluated the electrocatalytic activities of the activated IrNiOx/C for water oxidation under neutral conditions. In addition, their electronic structures and atomic arrangement were analyzed by in situ/operando X-ray absorption spectroscopy (XAS) and identical location transmission electron microscopy techniques, showing the reconstruction of the metal elements during electroactivation due to their different stabilities depending on the electrolyte pH. IrNiOx/C activated under neutral pH conditions showed a mildly oxidized thin IrOx shell. Meanwhile, IrNiOx/C activated in acidic and alkaline electrolytes showed Ni-leached IrOx and Ni-rich IrNiOx surfaces, respectively. Particularly, the surface of IrNiOx/C activated under alkaline conditions shows IrOx with a high d-band hole and NiOx with a high oxidation state leading to excellent OER catalytic activity in neutral media (η = 384 mV at 10 mA cm-2) whereas much lower OER activity was reported under alkaline or acid conditions. Our results, which showed that electrochemically activated catalysts under different pH conditions exhibit a unique electronic structure by modifying the initial alloy catalyst, can be applied for the design of catalysts suitable for various electrochemical reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...