Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 10(10)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027986

ABSTRACT

Heat stress (HS), a nonspecific response to environmental heat, can seriously affect dairy cow health. Feed additives may alleviate HS in dairy cows by improving rumen fermentation efficacy, stimulating feed consumption, enhancing vasodilation, and/or improving antioxidant capacity. The temperature-humidity index (THI) indicates that spring is a non-HS season, and summer is an HS season. HS results in the decrease in dairy cow antioxidant capacities. Our results indicated the decrease in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidation (T-AOC) levels and the increase in malondialdehyde (MDA) level during HS season. Meanwhile, antioxidant indexes (SOD, GSH-Px, and T-AOC) were positively correlated with milk yield (p < 0.01), whereas MDA exhibited a significant negative correlation with milk yield (p < 0.05). In addition, the effects of dihydropyridine (DHP) on antioxidant capacity and ruminal microbial communities in dairy cows under HS were investigated. During summer, dairy cows were randomly assigned into two groups under HS, including a standard diet (S-ND) group and standard diet with 3 g/day/cow DHP (S-D) group. DHP treatment significantly restored SOD and GSH-Px levels under HS. Denaturing gradient gel electrophoresis results indicated that the DHP altered ruminal bacterial community mainly composed Proteobacteria and Firmicutes in dairy cows under HS. Our results suggest that DHP can enhance the antioxidant abilities of dairy cows with favorable effects on ruminal microbial communities under HS, further alleviating HS on dairy cows.

2.
PLoS One ; 14(8): e0221348, 2019.
Article in English | MEDLINE | ID: mdl-31412081

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0220479.].

3.
PLoS One ; 14(7): e0220479, 2019.
Article in English | MEDLINE | ID: mdl-31356635

ABSTRACT

Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturation of oocytes, preimplantation embryonic development, and expression of important developmental genes. The results indicated that NaBu decreased the rates of GVBD and the first polar body extrusion (PBE) in vitro in a dose-dependent manner. Meanwhile, NaBu treatment led to an abnormality in the spindle apparatus in oocytes in MI. However, the ratio of phosphor-extracellular signal-regulated kinases (p-ERK)/ERK significantly decreased in oocytes treated with 2.0 mM NaBu for 8 h. Furthermore, NaBu treatment at 2.0 mM improved the quality of embryos and the mRNA expression levels of important developmental genes such as HDAC1, Sox2, and Pou5f1. These data suggest that although a high concentration NaBu will impede the meiosis of oocytes, 2.0 mM NaBu will promote the development of embryos in vitro. Further investigation is needed to clarify the direct/indirect effects of NaBu on the regulation of important developmental genes and their subsequent impacts on full-term development in mammals.


Subject(s)
Blastocyst/drug effects , Butyric Acid/pharmacology , Embryo, Mammalian/cytology , Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques/methods , Oocytes/cytology , Animals , Embryo, Mammalian/drug effects , Female , Fertilization in Vitro , Histamine Antagonists/pharmacology , Histones/metabolism , Male , Mice , Oocytes/drug effects , Parthenogenesis , Pregnancy
4.
Theriogenology ; 70(1): 35-43, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18456314

ABSTRACT

The objective was to determine the effects of an inhibin alpha (1-32) fragment gene on proliferation, apoptosis, and steroidogenesis of bovine granulosa cells (GC) isolated from medium and small follicles (diameter >4-8 and 1-4mm, respectively), and the effect of GC, previously transfected with pEGISI, on oocyte maturation and in vitro embryo development. To enhance expression of the inhibin alpha (1-32) fragment, GC were transfected with pEGISI. Transfection inhibited (P<0.05) GC proliferation (88.8+/-2.1%; mean+/-S.E.M.) compared to the control and EGFP groups (100% and 97.5+/-2.1%) from medium follicles, with no significant effect on GC from small follicles. Apoptosis was higher (P<0.01) in transfected GC than in controls. Transfection increased (P<0.05) estradiol synthesis from both medium and small follicles (0.57+/-0.13 and 0.86+/-0.13 pg/mL vs. 0.19+/-0.05 and 0.35+/-0.09 pg/mL in controls) after culturing for 48 h, with suppression (P<0.05) in transfected GC after 96 h. Transfection reduced (P<0.05) progesterone synthesis in GC from both medium and small follicles (24.5+/-3.4 and 75.4+/-4.6 ng/mL vs. 45.42+/-5.33 and 117.32+/-11.99 ng/mL in controls) after culture for 48 h, with no significant difference after 96 h. Maturation rate of oocytes co-cultured with transfected GC from medium follicles was decreased relative to control (61.5+/-6.8% vs. 71.2+/-5.7%, P<0.05), with no significant effect on embryo development. In conclusion, overexpression of inhibin alpha (1-32) fragment regulated GC development; effects on subsequent oocyte maturation were both time- and stage-dependent.


Subject(s)
Apoptosis/physiology , Granulosa Cells/cytology , Granulosa Cells/metabolism , Inhibins/physiology , Oocytes/physiology , Steroids/biosynthesis , Animals , Cattle , Cell Proliferation , Cells, Cultured , Coculture Techniques , Embryonic Development/physiology , Female , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Inhibins/genetics , Inhibins/metabolism , Oocytes/cytology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...