Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Biomol Ther (Seoul) ; 32(4): 499-507, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38914480

ABSTRACT

Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiation-induced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP+/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both in vitro and in vivo, and suppressed UVB-induced ROS generation via NADP+ production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.

2.
Environ Pollut ; 347: 123675, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38447650

ABSTRACT

Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.


Subject(s)
NADPH Oxidases , Receptors, Aryl Hydrocarbon , Humans , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Dual Oxidases/genetics , Dual Oxidases/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Particulate Matter/toxicity , Epigenesis, Genetic
3.
Clin Epigenetics ; 16(1): 19, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38303056

ABSTRACT

BACKGROUND: Environmental exposure, medical diagnostic and therapeutic applications, and industrial utilization of radionuclides have prompted a growing focus on the risks associated with low-dose radiation (< 100 mGy). Current evidence suggests that such radiation can induce epigenetic changes. Nevertheless, whether exposure to low-dose radiation can disrupt endothelial cell function at the molecular level is unclear. Because endothelial cells play crucial roles in cardiovascular health and disease, we aimed to investigate whether low-dose radiation could lead to differential DNA methylation patterns at the genomic level in endothelial cell (EC) lines. METHODS: We screened for changes in DNA methylation patterns in primary human aortic (HAECs) and coronary artery endothelial cells following exposure to low-dose ionizing radiation. Using a subset of genes altered via DNA methylation by low-dose irradiation, we performed gene ontology (GO) analysis to predict the possible biological network mediating the effect of low-dose radiation. In addition, we performed comprehensive validation using methylation and gene expression analyses, and ChIP assay to identify useful biomarkers among candidate genes for use in detecting low-dose radiation exposure in human primary normal ECs. RESULTS: Low-dose radiation is sufficient to induce global DNA methylation alterations in normal EC lines. GO analysis demonstrated that these hyper- or hypo-methylated genes were linked to diverse biological pathways. Our findings indicated a robust correlation between promoter hypermethylation and transcriptional downregulation of four genes (PGRMC1, UNC119B, RERE, and FNDC3B) in response to low-dose ionizing radiation in HAECs. CONCLUSIONS: Based on these findings, the identified genes can serve as potential DNA methylation biomarkers for the assessment of cardiovascular risk upon exposure to low-dose radiation.


Subject(s)
Cardiovascular Diseases , DNA Methylation , Humans , Epigenome , Endothelial Cells , Cardiovascular Diseases/genetics , Biomarkers , Radiation, Ionizing , Membrane Proteins/genetics , Receptors, Progesterone/genetics
4.
Noncoding RNA Res ; 9(1): 33-43, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38075199

ABSTRACT

High-dose radiation (HDR) is widely used for cancer treatment, but the effectiveness of low-dose radiation (LDR) in the treatment of various diseases is controversial. Therefore, to safely utilize LDR for therapeutic purposes, further research on its numerous biological effects of LDR is required. Interest in the increased use of medical imaging devices or the effects of surrounding living environmental radiation on the human body, particularly on fibrosis, is rapidly increasing. Therefore, this study aimed to verify the relationship between LDR and pulmonary fibrosis by evaluating the changes in fibroblasts after LDR treatment and their associated signaling mechanisms. LDR increased the expression of fibrosis markers COL1A1 and α-SMA, cell proliferation, and migration by activating YAP1 and Twist in fibroblasts. Meanwhile, miRNA was employed as a tool to inhibit LDR-induced fibrosis and it was found that miR-765 simultaneously targeted COL1A1, α-SMA, and YAP1. At the cellular level, miR-765 reduced the proliferation and migration of fibroblasts by suppressing the expression of LDR-induced fibrosis factors COL1A1, α-SMA, and YAP1. The efficacy of miR-765 in vivo was confirmed using bleomycin (BLM)-induced fibrotic mouse model. The characteristics of pulmonary fibrosis were reduced after injection of miR-765-overexpressing cells into BLM-induced fibrotic mice. In addition, the suppression of miR-765 expression in the plasma of patients with pulmonary fibrosis confirmed the negative relationship between pulmonary fibrosis and miR-765 expression. Therefore, this study demonstrates that miR-765 is a potential novel diagnostic biomarker and major target for the development of therapeutic agents to inhibit pulmonary fibrosis.

5.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37627511

ABSTRACT

Skin is a direct target of fine particulate matter (PM2.5), as it is constantly exposed. Herein, we investigate whether Korean red ginseng (KRG) can inhibit PM2.5-induced senescence in skin keratinocytes. PM2.5-treated human keratinocyte cell lines and normal human epidermal keratinocytes showed characteristics of cellular senescence, including flat and enlarged forms; however, KRG suppressed them in both cell types. Moreover, while cells exposed to PM2.5 showed a higher level of p16INK4A expression (a senescence inducer), KRG inhibited its expression. Epigenetically, KRG decreased the expression of the ten-eleven translocation (TET) enzyme, a DNA demethylase induced by PM2.5, and increased the expression of DNA methyltransferases suppressed by PM2.5, resulting in the decreased methylation of the p16INK4A promoter region. Additionally, KRG decreased the expression of mixed-lineage leukemia 1 (MLL1), a histone methyltransferase, and histone acetyltransferase 1 (HAT1) induced by PM2.5. Contrastingly, KRG increased the expression of the enhancer of zeste homolog 2, a histone methyltransferase, and histone deacetyltransferase 1 reduced by PM2.5. Furthermore, KRG decreased TET1, MLL1, and HAT1 binding to the p16INK4A promoter, corresponding with the decreased mRNA expression of p16INK4A. These results suggest that KRG exerts protection against the PM2.5-induced senescence of skin keratinocytes via the epigenetic regulation of p16INK4A.

6.
Genes (Basel) ; 14(7)2023 07 07.
Article in English | MEDLINE | ID: mdl-37510314

ABSTRACT

Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression.


Subject(s)
Endogenous Retroviruses , MicroRNAs , Non-Muscle Invasive Bladder Neoplasms , Urinary Bladder Neoplasms , Humans , Endogenous Retroviruses/genetics , Genome, Human , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , MicroRNAs/genetics , Tumor Suppressor Proteins/genetics , Urinary Bladder Neoplasms/genetics
7.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37341560

ABSTRACT

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Subject(s)
Colonic Neoplasms , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Wnt Signaling Pathway , Colonic Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Cell Line, Tumor
8.
Exp Mol Med ; 55(4): 767-778, 2023 04.
Article in English | MEDLINE | ID: mdl-37009790

ABSTRACT

Dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs for type 2 diabetes mellitus (T2DM). We investigated whether evogliptin® (EVO), a DPP-4 inhibitor, could protect against diabetic cardiomyopathy (DCM) and the underlying mechanisms. Eight-week-old diabetic and obese db/db mice were administered EVO (100 mg/kg/day) daily by oral gavage for 12 weeks. db/db control mice and C57BLKS/J as wild-type (WT) mice received equal amounts of the vehicle. In addition to the hypoglycemic effect, we examined the improvement in cardiac contraction/relaxation ability, cardiac fibrosis, and myocardial hypertrophy by EVO treatment. To identify the mechanisms underlying the improvement in diabetic cardiomyopathy by EVO treatment, its effect on lipotoxicity and the mitochondrial damage caused by lipid droplet accumulation in the myocardium were analyzed. EVO lowered the blood glucose and HbA1c levels and improved insulin sensitivity but did not affect the body weight or blood lipid profile. Cardiac systolic/diastolic function, hypertrophy, and fibrosis were improved in the EVO-treated group. EVO prevented cardiac lipotoxicity by reducing the accumulation of lipid droplets in the myocardium through suppression of CD36, ACSL1, FABP3, PPARgamma, and DGAT1 and enhancement of the phosphorylation of FOXO1, indicating its inhibition. The EVO-mediated improvement in mitochondrial function and reduction in damage were achieved through activation of PGC1a/NRF1/TFAM, which activates mitochondrial biogenesis. RNA-seq results for the whole heart confirmed that EVO treatment mainly affected the differentially expressed genes (DEGs) related to lipid metabolism. Collectively, these findings demonstrate that EVO improves cardiac function by reducing lipotoxicity and mitochondrial injury and provides a potential therapeutic option for DCM.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Dipeptidyl-Peptidase IV Inhibitors , Mice , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Cardiomegaly
9.
Noncoding RNA Res ; 8(2): 164-173, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632615

ABSTRACT

Radiotherapy is widely used for cancer treatment, but paradoxically, it has been reported that surviving cancer cells can acquire resistance, leading to recurrence or metastasis. Efforts to reduce radioresistance are required to increase the effectiveness of radiotherapy. miRNAs are advantageous as therapeutic agents because it can simultaneously inhibit the expression of several target mRNAs. Therefore, this study discovered miRNA that regulated radioresistance and elucidated its signaling mechanism. Our previous study confirmed that miR-5088-5p was associated with malignancy and metastasis in breast cancer. As a study to clarify the relationship between radiation and miR-5088-5p identified as onco-miRNA, it was confirmed that radiation induced hypomethylation of the promoter of miR-5088-5p and its expression increased. On the other hand, miR-5088-5p inhibitors were confirmed to reduce radiation-induced epithelial-mesenchymal transition, stemness, and metastasis by reducing Slug. Therefore, this study showed the potential of miR-5088-5p inhibitors as therapeutic agents to suppress radioresistance.

10.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498950

ABSTRACT

Growing evidence suggests that genetic and epigenetic factors, including environmental factors, contribute to the development of oral squamous cell carcinoma (OSCC). Here, we investigated the transcriptional silencing of the CD24, CD44, CD133, and CD147 genes, which are well-known cancer stem cell surface markers in various cancer types, including OSCC. We first examined the correlation between the transcriptional expression level and reactivation by 5-aza-2'-deoxycytidine (5-aza-dC) and the promoter methylation levels of the four genes in several OSCC cell lines. We observed promoter hypermethylation for the CD24, CD133, and CD147 genes at 70%, 75%, and 70%, respectively, in OSCC cell lines compared to normal oral mucosa tissues (<53%), indicating that this methylation pattern is cancer-specific, which was confirmed by bisulfite sequencing analysis. More specifically, the expression and methylation profiles of CD133 and CD147 extracted from The Cancer Genome Atlas (TCGA) database were negatively correlated, supporting their epigenetic regulation in primary OSCC tumors. The methylation status of CD133 and CD147 was associated with poor survival in patients with OSCC using the TCGA database. Our findings provide additional insight into the abnormal DNA methylation of CD133 and that CD147 could be used for the diagnosis and therapeutic treatment of patients with OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , DNA Methylation , Neoplastic Stem Cells/pathology , Head and Neck Neoplasms/genetics
11.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430236

ABSTRACT

Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1ß in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1ß to mature IL-1ß in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1ß production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1ß production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1ß production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1ß production in response to LPS.


Subject(s)
Mitogen-Activated Protein Kinase 14 , p38 Mitogen-Activated Protein Kinases , p38 Mitogen-Activated Protein Kinases/metabolism , Caspase 1/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , Radiation, Ionizing
12.
Molecules ; 27(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956749

ABSTRACT

Particulate matter 2.5 (PM2.5) exposure can trigger adverse health outcomes in the human skin, such as skin aging, wrinkles, pigment spots, and atopic dermatitis. PM2.5 is associated with mitochondrial damage and the generation of reactive oxygen species (ROS). Hesperidin is a bioflavonoid that exhibits antioxidant and anti-inflammatory properties. This study aimed to determine the mechanism underlying the protective effect of hesperidin on human HaCaT keratinocytes against PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence. Human HaCaT keratinocytes were pre-treated with hesperidin and then treated with PM2.5. Hesperidin attenuated PM2.5-induced mitochondrial and DNA damage, G0/G1 cell cycle arrest, and SA-ßGal activity, the protein levels of cell cycle regulators, and matrix metalloproteinases (MMPs). Moreover, treatment with a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, along with hesperidin markedly restored PM2.5-induced cell cycle arrest and cellular senescence. In addition, hesperidin significantly reduced the activation of MMPs, including MMP-1, MMP-2, and MMP-9, by inhibiting the activation of activator protein 1. In conclusion, hesperidin ameliorates PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence in human HaCaT keratinocytes via the ROS/JNK pathway.


Subject(s)
Hesperidin , Apoptosis , Cell Cycle Checkpoints , Cellular Senescence , Hesperidin/metabolism , Hesperidin/pharmacology , Humans , Keratinocytes , Particulate Matter/metabolism , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism
13.
Biomol Ther (Seoul) ; 30(1): 80-89, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34887366

ABSTRACT

The targeting of DNA methylation in cancer using DNA hypomethylating drugs has been well known to sensitize cancer cells to chemotherapy and immunotherapy by affecting multiple pathways. Herein, we investigated the combinational effects of DNA hypomethylating drugs and ionizing radiation (IR) in human sarcoma cell lines both in vitro and in vivo. Clonogenic assays were performed to determine the radiosensitizing properties of two DNA hypomethylating drugs on sarcoma cell lines we tested in this study with multiple doses of IR. We analyzed the effects of 5-aza-dC or SGI-110, as DNA hypomethylating drugs, in combination with IR in vitro on the proliferation, apoptosis, caspase-3/7 activity, migration/invasion, and Western blotting using apoptosis- or autophagy-related factors. To confirm the combined effect of DNA hypomethylating drugs and IR in our in vitro experiment, we generated the sarcoma cells in nude mouse xenograft models. Here, we found that the combination of DNA hypomethylating drugs and IR improved anticancer effects by inhibiting cell proliferation and by promoting synergistic cell death that is associated with both apoptosis and autophagy in vitro and in vivo. Our data demonstrated that the combination effects of DNA hypomethylating drugs with radiation exhibited greater cellular effects than the use of a single agent treatment, thus suggesting that the combination of DNA hypomethylating drugs and radiation may become a new radiotherapy to improve therapeutic efficacy for cancer treatment.

14.
Alpha Psychiatry ; 23(6): 294-297, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36628383

ABSTRACT

Background: This study aimed to compare the NR3C1 expression among cancer patients with major depressive disorder (cancer depression), cancer patients without major depressive disorder (cancer non-depression), and major depressive disorder patients without cancer (general depression), as a preliminary investigation of epigenetic changes in the glucocorticoid receptor gene. Methods: From May 2019 to November 2019, patients were recruited from the Department of Psychiatry, Cancer Center in Busan, Korea. For gene expression studies, primers were designed using the Primer3 web tool (http://frodo.wi.mit.edu/primer3), and amplification reactions were performed. Results: Expression levels of NR3C1 were lower in cancer depression and general depression than in cancer non-depression group. Given that we observed downregulation of the NR3C1 gene expression in depressive patients regardless of cancer status, it appears that methylation changes in NR3C1 may contribute to the pathophysiology of depression. Conclusion: The results of this study imply that the expression of NR3C1 may be decreased in major depressive disorder.

15.
Cell Rep ; 37(8): 109996, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34818544

ABSTRACT

Triple-negative breast cancers (TNBCs) are characterized by high rates of recurrence and poor clinical outcomes. Deregulated E3 ligases are involved in breast cancer pathogenesis and progression, but the underlying mechanisms are unclear. Here, we find that F-box and leucine-rich repeat protein 16 (FBXL16) acts as a tumor suppressor in TNBCs. FBXL16 directly binds to HIF1α and induces its ubiquitination and degradation, regardless of the tumor microenvironment, resulting in blockade of the HIF1α-mediated epithelial-mesenchymal transition (EMT) and angiogenesis features of breast cancer. In TNBCs, FBXL16 expression is downregulated by the p38/miR-135b-3p axis, and loss of FBXL16 expression restores HIF1α-mediated metastatic features of breast cancer. Low expression of FBXL16 is associated with high-grade and lymph node-positive tumors and poor overall survival of breast cancer. Taken together, these findings demonstrate that modulation of FBXL16 expression may offer a favorable strategy for treatment of patients with metastatic breast cancer, including TNBCs.


Subject(s)
Breast Neoplasms/genetics , F-Box Proteins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Biomarkers, Tumor , Breast , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , F-Box Proteins/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, Tumor Suppressor/physiology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leucine-Rich Repeat Proteins/metabolism , Mice , Mice, Inbred NOD , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/genetics
16.
Mol Ther Nucleic Acids ; 25: 127-142, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34457998

ABSTRACT

Breast cancer is the most common female cancer in the world. Despite the active research on metastatic breast cancer, the treatment of breast cancer patients is still difficult because the mechanism is not well known. Therefore, research on new targets and mechanisms for diagnosis and treatment of breast cancer patients is required. On the other hand, microRNA (miRNA) has the advantage of simultaneously regulating the expression of many target genes, so it has been proposed as an effective biomarker for the treatment of various diseases including cancer. This study analyzed the role and mechanism of DBC2 (deleted in breast cancer 2), which is known to inhibit its expression in breast cancer, and proposed microRNA (miR)-5088-5p, which regulates its expression. It was revealed that the biogenesis of miR-5088-5p was upregulated by hypomethylation of its promoter, promoted by Fyn, and was involved in malignancy in breast cancer. With the use of the cellular level, clinical samples, and published data, we verified that the expression patterns of DBC2 and miR-5088-5p were negatively related, suggesting the potential as novel biomarkers for the diagnosis of breast cancer patients.

19.
Life (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946400

ABSTRACT

Colon cancer remains one of the leading causes of cancer-related deaths worldwide. Transformation of colon epithelial cells into invasive adenocarcinomas has been well known to be due to the accumulation of multiple genetic and epigenetic changes. In the past decade, the etiology of inflammatory bowel disease (IBD) which is characterized by chronic inflammation of the intestinal mucosa, was only partially explained by genetic studies providing susceptibility loci, but recently epigenetic studies have provided critical evidences affecting IBD pathogenesis. Over the past decade, A deep understanding of epigenetics along with technological advances have led to identifying numerous genes that are regulated by promoter DNA hypermethylation in colorectal diseases. Recent advances in our understanding of the role of DNA methylation in colorectal diseases could improve a multitude of powerful DNA methylation-based biomarkers, particularly for use as diagnosis, prognosis, and prediction for therapeutic approaches. This review focuses on the emerging potential for translational research of epigenetic alterations into clinical utility as molecular biomarkers. Moreover, this review discusses recent progress regarding the identification of unknown hypermethylated genes in colon cancers and IBD, as well as their possible role in clinical practice, which will have important clinical significance, particularly in the era of the personalized medicine.

20.
J Ginseng Res ; 44(6): 843-848, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33192128

ABSTRACT

This study investigated the inhibitory effect of ginsenoside-Rp1 (G-Rp1) on the ionizing radiation (IR)-induced response in lipopolysaccharide (LPS)-stimulated macrophages and its effects on the malignancy of tumor cells. G-Rp1 inhibited the activation of IR-induced DNA damage-related signaling molecules and thereby interfered with the IR-increased production of nitric oxide (NO) and interleukin (IL)-1ß. The inhibitory effect of G-Rp1 increased the survival rate of mice inoculated with CT26 colon cancer cells by suppressing the phenotypic variation of tumor cells induced by conditioned medium obtained from IR- and LPS-treated J774A.1 macrophages.

SELECTION OF CITATIONS
SEARCH DETAIL
...