Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Digit Health ; 8: 20552076221134456, 2022.
Article in English | MEDLINE | ID: mdl-36312849

ABSTRACT

Background: Facet tropism is defined as the asymmetry between the left and right facet joints relative to the sagittal plane. Published clinical studies have found that facet tropism is associated with cervical disc herniation. However, the relationship between the facet orientation and the side of cervical disc herniation remains controversial. Therefore, this study used the finite-element technique to investigate the biomechanical effects of the sagittal angle of the cervical facet joints on the cervical intervertebral disc. Objective: The biomechanical effects of the sagittal angle of the cervical facet joint on the cervical disc and facet joint were investigated using the finite-element technique. Methods: The finite-element model was constructed using computed tomography scans of a 26-year-old female volunteer. First, a cervical model was constructed from C3 to C7. The model was verified using data from previously published studies. Second, the facet orientation at the C5-C6 level was altered to simulate different sagittal angles of cervical facet joints. Five models, F70, F80, F90, F100, and F110, were simulated with different facet joint orientations (70°, 80°, 90°, 100°, and 110° facet joint angles at the left side, respectively, and 90° facet joint angles at the right side) at the C5-C6 facet joints. In each model, annular fibres stress and facet cartilage pressure were studied under six pure moments and two combined moments. Results: Comparing the stress of the annulus fibres in flexion combined with right axial rotation and in flexion combined with left axial rotation in the same model, no difference in the maximum stress of the annulus fibres was noted between these two different moments in the F90 model, whereas differences of 12.80%, 8.84%, 14.95% and 33.32% were noted in the F70, F80, F100 and F110 models, respectively. The same trend was observed when comparing the maximum stress of the annulus fibres in each model during left and right axial rotation. No differences in annular fibres stress and facet cartilage pressure were noted among the five models in flexion, extension, lateral bending, left axial rotation, and flexion combined with left axial rotation in this study. However, compared with the F70 model in flexion combined with right axial rotation, the annulus fibres stress of the F80, F90, F100, and F110 models increased by 5.53%, 13.03%, 35.04%, and 72.94%, respectively, and the pressure of the left facet joint of these models decreased by 5.65%, 12.10%, 18.41%, and 25.74%, respectively. The same trend was observed in the right axial moment. Conclusion: Facet tropism leads to unbalanced stress distribution on the annulus fibres at the cervical intervertebral disc. The greater the sagittal angle of the facet joint, the greater the annular fibres stress on this side. We hypothesised that the side with the larger sagittal angle of the facet joint exhibits a greater risk of disc herniation.

2.
Appl Environ Microbiol ; 87(20): e0098621, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34319792

ABSTRACT

The twilight zone (from the base of the euphotic zone to the depth of 1,000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity directly associated with POC remineralization in this chronically understudied realm. Here, we characterized the microbial community proteomes of POC samples collected from the twilight zone of three contrasting sites in the Northwest Pacific Ocean using a metaproteomic approach. The particle-attached bacteria from Alteromonadales, Rhodobacterales, and Enterobacterales were the primary POC remineralizers. Hydrolytic enzymes, including proteases and hydrolases, that degrade proteinaceous components and polysaccharides, the main constituents of POC, were abundant and taxonomically associated with these bacterial groups. Furthermore, identification of diverse species-specific transporters and metabolic enzymes implied niche specialization for nutrient acquisition among these bacterial groups. Temperature was the main environmental factor driving the active bacterial groups and metabolic processes, and Enterobacterales replaced Alteromonadales as the predominant group under low temperature. This study provides insight into the key bacteria and metabolic processes involved in POC remineralization, and niche complementarity and species substitution among bacterial groups are critical for efficient POC remineralization in the twilight zone. IMPORTANCE The ocean's twilight zone is a critical zone where more than 70% of the sinking particulate organic carbon (POC) is remineralized. Therefore, the twilight zone determines the size of biological carbon storage in the ocean and regulates the global climate. Prokaryotes are major players that govern remineralization of POC in this region. However, knowledge of microbial community structure and metabolic activity is still lacking. This study unveiled microbial communities and metabolic activities of POC samples collected from the twilight zone of three contrasting environments in the Northwest Pacific Ocean using a metaproteomic approach. Alteromonadales, Rhodobacterales, and Enterobacterales were the major remineralizers of POC. They excreted diverse species-specific hydrolytic enzymes to split POC into solubilized POC or dissolved organic carbon. Temperature played a crucial role in regulating the community composition and metabolism. Furthermore, niche complementarity or species substitution among bacterial groups guaranteed the efficient remineralization of POC in the twilight zone.


Subject(s)
Carbon/metabolism , Microbiota , Seawater/microbiology , Bacteria/isolation & purification , Bacterial Proteins/analysis , Pacific Ocean , Particulate Matter , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL