Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Acta Biomater ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838904

ABSTRACT

Macrophages are the primary cell type orchestrating bioresorbable vascular graft (BVG) remodeling and infiltrate from three sources: the adjacent native vessel, circulating blood, and transmural migration from outer surface of the graft. To elucidate the kinetics of macrophage infiltration into the BVG, we fabricated two different bilayer arterial BVGs consisting of a macroporous sponge layer and a microporous electrospun (ES) layer. The Outer ES graft was designed to reduce transmural cell infiltration from the outer surface and the Inner ES graft was designed to reduce cell infiltration from the circulation. These BVGs were implanted in mice as infrarenal abdominal aorta grafts and extracted at 1, 4, and 8 weeks (n = 5, 10, and 10 per group, respectively) for evaluation. Cell migration into BVGs was higher in the Inner ES graft than in the Outer ES graft. For Inner ES grafts, the majority of macrophage largely expressed a pro-inflammatory M1 phenotype but gradually changed to tissue-remodeling M2 macrophages. In contrast, in Outer ES grafts macrophages primarily maintained an M1 phenotype. The luminal surface endothelialized faster in the Inner ES graft; however, the smooth muscle cell layer was thicker in the Outer ES graft. Collagen fibers were more abundant and matured faster in the Inner ES graft than that in the Outer ES graft. In conclusion, compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs. STATEMENT OF SIGNIFICANCE: To elucidate the kinetics of macrophage infiltration into the bioresorbable vascular graft (BVG), two different bilayer arterial BVGs were implanted in mice as infrarenal abdominal aorta grafts. Cell migration into BVGs was higher in the inner electrospun graft which cells mainly infiltrate from outer surface than in the outer electrospun graft which cells mainly infiltrate from the circulating blood. In the inner electrospun grafts, the majority of macrophages changed from the M1 phenotype to the M2 phenotype, however, outer electrospun grafts maintained the M1 phenotype. Collagen fibers matured faster in the Inner electrospun graft. Compared to macrophages infiltrating from the circulating blood, transmural macrophages from outside promote the acute inflammatory-mediated response for vascular remodeling and subsequent collagen deposition within BVGs.

3.
Article in English | MEDLINE | ID: mdl-37925138

ABSTRACT

OBJECTIVES: Lung transplant warm ischemia-reperfusion injury (IRI) results in cellular injury, inflammation, and poor graft function. Mitsugumin 53 (MG53) is an endogenous protein with cell membrane repair properties and the ability to modulate the inflammasome. We hypothesize that the absence of circulating MG53 protein in the recipient increases IRI, and higher levels of circulating MG53 protein mitigate IRI associated with lung transplantation. METHODS: To demonstrate protection, wild-type (wt) lung donor allografts were transplanted into a wt background, a MG53 knockout (mg53-/-), or a constitutively overexpressed MG53 (tissue plasminogen activator-MG53) recipient mouse after 1 hour of warm ischemic injury. Mice survived for 5 days after transplantation. Bronchioalveolar lavage, serum, and tissue were collected at sacrifice. Bronchioalveolar lavage, serum, and tissue markers of apoptosis and a biometric profile of lung health were analyzed. RESULTS: mg53-/- mice had significantly greater levels of markers of overall cell lysis and endothelial cell injury. Overexpression of MG53 resulted in a signature similar to that of wt controls. At the time of explant, tissue plasminogen activator-MG53 recipient tissue expressed significantly greater levels of MG53, measured by immunohistochemistry, compared with mg53-/-, demonstrating uptake of endogenous overexpressed MG53 into donor tissue. CONCLUSIONS: In a warm IRI model of lung transplantation, the absence of MG53 resulted in increased cell injury and inflammation. Endogenous overexpression of MG53 in the recipient results in protection in the wt donor. Together, these data suggest that MG53 is a potential therapeutic agent for use in lung transplantation to mitigate IRI.

4.
Adv Mater ; 35(23): e2300681, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37029333

ABSTRACT

A new set of pyrrolopyrrole-based (PPr) polymers incorporated with thioalkylated/alkylated bithiophene (SBT/BT) is synthesized and explored as hole-transporting materials (HTMs) for Sn-based perovskite solar cells (TPSCs). Three bithiophenyl spacers bearing the thioalkylated hexyl (SBT-6), thioalkylated tetradecyl (SBT-14), and tetradecyl (BT-14) chains are utilized to examine the effect of the alkyl chain lengths. Among them, the TPSCs are fabricated using PPr-SBT-14 as HTMs through a two-step approach by attaining a power conversion efficiency (PCE) of 7.6% with a remarkable long-term stability beyond 6000 h, which has not been reported elsewhere for a non-PEDOT:PSS-based TPSC. The PPr-SBT-14 device is stable under light irradiation for 5 h in air (50% relative humidity) at the maximum power point (MPP). The highly planar structure, strong intramolecular S(alkyl)···S(thiophene) interactions, and extended π-conjugation of SBT enable the PPr-SBT-14 device to outperform the standard poly(3-hexylthiophene,-2,5-diyl (P3HT) and other devices. The longer thio-tetradecyl chain in SBT-14 restricts molecular rotation and strongly affects the molecular conformation, solubility, and film wettability over other polymers. Thus, the present study makes a promising dopant-free polymeric HTM model for the future design of highly efficient and stable TPSCs.

5.
Ann Clin Lab Sci ; 52(4): 556-562, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36197767

ABSTRACT

OBJECTIVE: To identify the relation of microvascular density (MVD) to the early postoperative recurrence and metastasis of T1 esophageal squamous cell carcinoma, and to determine whether MVD could be a prognostic predictor of esophageal squamous cell carcinoma. METHODS: Patients with T1 esophageal squamous cell carcinoma were enrolled. Immunohistochemistry with primary antibody against CD-34 was performed to count MVD. ROC curve was plotted and appropriate cutoff value was determined to evaluate the potential power of MVD in predicting early recurrence and metastasis of T1 esophageal squamous cell carcinoma. Survival curves were drawn by the Kaplan-Meier method and significance were tested by the Mantel-Cox test. RESULTS: A total of 37 patients with T1 esophageal squamous cell carcinoma were enrolled. The MVD of T1 esophageal squamous cell carcinoma patients with early metastasis was significantly higher than that of T1 esophageal squamous cell carcinoma patients without early metastasis (65.83±4.39 vs. 42.26±2.34, p<0.001). MVD was available in distinguishing whether patients with early esophageal are prone to postoperative recurrence or metastasis (AUC=0.861; 95% CI 0.738-0.984, p<0.001), with 88.89% sensitivity and 68.42% specificity of MVD being obtained when the cut-off is 44.5. Kaplan-Meier survival curves showed that patients with a higher MVD had a lower survival (37.35 months) compared with those with low MVD (40.79 months) (p<0.05). CONCLUSIONS: MVD could be a promising indicator for early postoperative recurrence and metastasis of T1 esophageal squamous cell carcinoma and the prognosis of these patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophageal Neoplasms/surgery , Esophageal Squamous Cell Carcinoma/surgery , Humans , Microvascular Density , Neovascularization, Pathologic , Prognosis
6.
Adv Healthc Mater ; 11(22): e2200890, 2022 11.
Article in English | MEDLINE | ID: mdl-36112115

ABSTRACT

A strategy to recruit monocytes (MCs) from blood to regenerate vascular tissue from unseeded (cell-free) tissue engineered vascular grafts is presented. When immobilized on the surface of vascular grafts, the fusion protein, H2R5 can capture blood-derived MC under static or flow conditions in a shear stress dependent manner. The bound MC turns into macrophages (Mϕ) expressing both M1 and M2 phenotype specific genes. When H2R5 functionalized acellular-tissue engineered vessels (A-TEVs) are implanted into the mouse aorta, they remain patent and form a continuous endothelium expressing both endothelial cell (EC) and MC specific proteins. Underneath the EC layer, multiple cells layers are formed coexpressing both smooth muscle cell (SMC) and MC specific markers. Lineage tracing analysis using a novel CX3CR1-confetti mouse model demonstrates that fluorescently labeled MC populates the graft lumen by two and four weeks postimplantation, providing direct evidence in support of MC/Mϕ recruitment to the graft lumen. Given their abundance in the blood, circulating MCs may be a great source of cells that contribute directly to the endothelialization and vascular wall formation of acellular vascular grafts under the right chemical and biomechanical cues.


Subject(s)
Monocytes , Tissue Engineering , Mice , Animals , Monocytes/metabolism , Myocytes, Smooth Muscle , Endothelial Cells , Blood Vessel Prosthesis , Endothelium, Vascular
7.
Adv Mater ; 34(47): e2205614, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36120809

ABSTRACT

Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.


Subject(s)
Blood Vessel Prosthesis , Elastin , Mice , Animals , Myocytes, Smooth Muscle , Arteries , Collagen
8.
J Soc Psychol ; 162(4): 407-422, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-34315349

ABSTRACT

The aim of this study is to understand individual motivation to speak up, which extends the application of voice behavior. Employing a cross-level moderation framework, this paper explored the relationship between employees' authoritarian leadership perceptions and their speaking-up behavior, as reported by supervisors, along with a moderating effect of group loyalty. Specifically, we propose a conceptual variable, "saying nothing but good news", which related to the choice of the selective disclosure of information to others. Utilizing data of 140 supervisors and 603 subordinates in the Taiwanese military, results of the hierarchical linear modeling (HLM) analysis revealed that authoritarian leadership was negatively related to prohibitive voice, but positively related to saying nothing but good news. Group loyalty moderated the relationship between authoritarian leadership and prohibitive voice when group loyalty is high. Implications for management and future research are discussed.


Subject(s)
Employment , Leadership , Humans
9.
Front Psychol ; 12: 710185, 2021.
Article in English | MEDLINE | ID: mdl-34646200

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic has caused hundreds of millions of cases and millions of deaths, resulting in the development of COVID-19 phobia. To prevent getting COVID-19, Centers for Disease Control and Prevention (CDC) in many countries encourage people to protect themselves via several strategies, such as wearing face masks or using sanitizers when washing hands. However, at times, such supplies for preventing COVID-19 are limited. In this study, we examine the relationship between COVID-19 phobia and panic buying behavior from an economic perspective and test if identity fusion plays a buffering role for this phenomenon. Data was collected from September 4th to November 1st in 2020 across three countries (the United States, Germany, and Taiwan). A self-report measure of panic buying behavior was developed and culturally cross-validated. Moderation analyses were conducted focusing on the study objectives. Results show that the economic factor in COVID-19 phobia predicts panic buying behavior, and this effect is buffered by identity fusion. It is worthy to note that this buffering effect emerged only in the Taiwanese sample, not in the American or German samples. Implications of identity fusion theory in human behavior are discussed.

10.
FASEB J ; 35(10): e21849, 2021 10.
Article in English | MEDLINE | ID: mdl-34473380

ABSTRACT

Macrophages are a critical driver of neovessel formation in tissue-engineered vascular grafts (TEVGs), but also contribute to graft stenosis, a leading clinical trial complication. Macrophage depletion via liposomal delivery of clodronate, a first-generation bisphosphonate, mitigates stenosis, but simultaneously leads to a complete lack of tissue development in TEVGs. This result and the associated difficulty of utilizing liposomal delivery means that clodronate may not be an ideal means of preventing graft stenosis. Newer generation bisphosphonates, such as zoledronate, may have differential effects on graft development with more facile drug delivery. We sought to examine the effect of zoledronate on TEVG neotissue formation and its potential application for mitigating TEVG stenosis. Thus, mice implanted with TEVGs received zoledronate or no treatment and were monitored by serial ultrasound for graft dilation and stenosis. After two weeks, TEVGs were explanted for histological examination. The overall graft area and remaining graft material (polyglycolic-acid) were higher in the zoledronate treatment group. These effects were associated with a corresponding decrease in macrophage infiltration. In addition, zoledronate affected the deposition of collagen in TEVGs, specifically, total and mature collagen. These differences may be, in part, explained by a depletion of leukocytes within the bone marrow that subsequently led to a decrease in the number of tissue-infiltrating macrophages. TEVGs from zoledronate-treated mice demonstrated a significantly greater degree of smooth muscle cell presence. There was no statistical difference in graft patency between treatment and control groups. While zoledronate led to a decrease in the number of macrophages in the TEVGs, the severity of stenosis appears to have increased significantly. Zoledronate treatment demonstrates that the process of smooth muscle cell-mediated neointimal hyperplasia may occur separately from a macrophage-mediated mechanism.


Subject(s)
Blood Vessel Prosthesis/statistics & numerical data , Neointima/therapy , Tissue Engineering/methods , Vascular Grafting/methods , Zoledronic Acid/pharmacology , Animals , Bone Density Conservation Agents/pharmacology , Female , Mice , Mice, Inbred C57BL , Neointima/pathology , Tissue Scaffolds/chemistry
11.
J Vis Exp ; (174)2021 08 05.
Article in English | MEDLINE | ID: mdl-34424247

ABSTRACT

The underlying causes of heart valve related-disease (HVD) are elusive. Murine animal models provide an excellent tool for studying HVD, however, the surgical and instrumental expertise required to accurately quantify the structure and organization across multiple length scales have stunted its advancement. This work provides a detailed description of the murine dissection, en bloc staining, sample processing, and correlative imaging procedures for depicting the heart valve at different length scales. Hydrostatic transvalvular pressure was used to control the temporal heterogeneity by chemically fixing the heart valve conformation. Micro-computed tomography (µCT) was used to confirm the geometry of the heart valve and provide a reference for the downstream sample processing needed for the serial block face scanning electron microscopy (SBF-SEM). High-resolution serial SEM images of the extracellular matrix (ECM) were taken and reconstructed to provide a local 3D representation of its organization. µCT and SBF-SEM imaging methods were then correlated to overcome the spatial variation across the pulmonary valve. Though the work presented is exclusively on the pulmonary valve, this methodology could be adopted for describing the hierarchical organization in biological systems and is pivotal for the structural characterization across multiple length scales.


Subject(s)
Imaging, Three-Dimensional , Pulmonary Valve , Animals , Mice , Microscopy, Electron, Scanning , Pulmonary Valve/diagnostic imaging , Pulmonary Valve/surgery , Specimen Handling , X-Ray Microtomography
12.
Sci Rep ; 11(1): 8037, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850181

ABSTRACT

Tissue engineered vascular grafts hold promise for the creation of functional blood vessels from biodegradable scaffolds. Because the precise mechanisms regulating this process are still under investigation, inducible genetic mouse models are an important and widely used research tool. However, here we describe the importance of challenging the baseline assumption that tamoxifen is inert when used as a small molecule inducer in the context of cardiovascular tissue engineering. Employing a standard inferior vena cava vascular interposition graft model in C57BL/6 mice, we discovered differences in the immunologic response between control and tamoxifen-treated animals, including occlusion rate, macrophage infiltration and phenotype, the extent of foreign body giant cell development, and collagen deposition. Further, differences were noted between untreated males and females. Our findings demonstrate that the host-response to materials commonly used in cardiovascular tissue engineering is sex-specific and critically impacted by exposure to tamoxifen, necessitating careful model selection and interpretation of results.


Subject(s)
Tamoxifen , Tissue Engineering , Animals , Blood Vessel Prosthesis , Bone Marrow Cells , Female , Mice , Mice, Inbred C57BL , Tissue Scaffolds
13.
Mol Med Rep ; 23(3)2021 03.
Article in English | MEDLINE | ID: mdl-33495805

ABSTRACT

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that several pairings of panels in Fig. 5, as shown on p. 5599, were strikingly similar. After having examined their original data, the authors realized that they uploaded some images incorrectly during the process of compiling this figure, and that there were duplicated data panels in this figure. However, the authors were able to consult their original data, and had access to the correct images. The revised version of Fig. 5, showing the correct data for the Akt/Control, p­Akt/Control, mTOR/0.05 µM Ouabain, HIF­1α/0.05 µM Ouabain and Akt/0.5 µM Ouabain experiments, is shown opposite. Note that the replacement of the erroneous data does not affect either the results or the conclusions reported in this paper, and all the authors agree to this Corrigendum. The authors are grateful to the Editor of Molecular Medicine Reports for granting them this opportunity to publish a Corrigendum, and apologize to the readership for any inconvenience caused. [the original article was published in Molecular Medicine Reports 17: 5595­5600, 2018; DOI: 10.3892/mmr.2018.8587].

14.
Tissue Eng Part A ; 27(9-10): 593-603, 2021 05.
Article in English | MEDLINE | ID: mdl-32854586

ABSTRACT

Wall stress is often lower in tissue-engineered constructs than in comparable native tissues due to the use of stiff polymeric materials having thicker walls. In this work, we sought to design a murine arterial graft having a more favorable local mechanical environment for the infiltrating cells; we used electrospinning to enclose a compliant inner core of poly(glycerol sebacate) with a stiffer sheath of poly(caprolactone) to reduce the potential for rupture. Two scaffolds were designed that differed in the thickness of the core as previous computational simulations found that circumferential wall stresses could be increased in the core toward native values by increasing the ratio of the core:sheath. Our modified electrospinning protocols reduced swelling of the core upon implantation and eliminated residual stresses in the sheath, both of which had contributed to the occlusion of implanted grafts during pilot studies. For both designs, a subset of implanted grafts occluded due to thrombosis or ruptured due to suspected point defects in the sheath. However, there were design-based differences in collagen content and mechanical behavior during early remodeling of the patent samples, with the thinner-core scaffolds having more collagen and a stiffer behavior after 12 weeks of implantation than the thicker-core scaffolds. By 24 weeks, the thicker-core scaffolds also became stiff, with similar amounts of collagen but increased smooth muscle cell and elastin content. These data suggest that increasing wall stress toward native values may provide a more favorable environment for normal arterial constituents to form despite the overall stiffness of the construct remaining elevated due to the absolute increase in load-bearing constituents.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Animals , Arteries , Blood Vessel Prosthesis , Collagen , Elastin , Mice , Polyesters
15.
Adv Healthc Mater ; 9(24): e2001093, 2020 12.
Article in English | MEDLINE | ID: mdl-33063452

ABSTRACT

Tissue engineered vascular grafts (TEVGs) using scaffolds fabricated from braided poly(glycolic acid) (PGA) fibers coated with poly(glycerol sebacate) (PGS) are developed. The approach relies on in vivo tissue engineering by which neotissue forms solely within the body after a scaffold has been implanted. Herein, the impact of altering scaffold braid design and scaffold coating on neotissue formation is investigated. Several combinations of braiding parameters are manufactured and evaluated in a Beige mouse model in the infrarenal abdominal aorta. Animals are followed with 4D ultrasound analysis, and 12 week explanted vessels are evaluated for biaxial mechanical properties as well as histological composition. Results show that scaffold parameters (i.e., braiding angle, braiding density, and presence of a PGS coating) have interdependent effects on the resulting graft performance, namely, alteration of these parameters influences levels of inflammation, extracellular matrix production, graft dilation, neovessel distensibility, and overall survival. Coupling carefully designed in vivo experimentation with regression analysis, critical relationships between the scaffold design and the resulting neotissue that enable induction of favorable cellular and extracellular composition in a controlled manner are uncovered. Such an approach provides a potential for fabricating scaffolds with a broad range of features and the potential to manufacture optimized TEVGs.


Subject(s)
Blood Vessel Prosthesis , Tissue Engineering , Animals , Extracellular Matrix , Mice , Tissue Scaffolds
16.
Adv Healthc Mater ; 9(24): e2001094, 2020 12.
Article in English | MEDLINE | ID: mdl-33073543

ABSTRACT

Tissue engineered vascular grafts (TEVGs) are a promising technology, but are hindered by occlusion. Seeding with bone-marrow derived mononuclear cells (BM-MNCs) mitigates occlusion, yet the precise mechanism remains unclear. Seeded cells disappear quickly and potentially mediate an anti-inflammatory effect through paracrine signaling. Here, a series of reciprocal genetic TEVG implantations plus recombinant protein treatment is reported to investigate what role interleukin-10, an anti-inflammatory cytokine, plays from both host and seeded cells. TEVGs seeded with BM-MNCs from wild-type and IL-10 KO mice, plus unseeded grafts, are implanted into wild-type and IL-10 KO mice. Wild-type mice with unseeded grafts also receive recombinant IL-10. Serial ultrasound evaluates occlusion and TEVGs are harvested at 14 d for immunohistochemical analysis. TEVGs in IL-10 KO mice have significantly higher occlusion incidence compared to wild-type mice attributed to acute (<3 d) thrombosis. Cell seeding rescues TEVGs in IL-10 KO mice comparable to wild-type patency. IL-10 from the host and seeded cells do not significantly influence graft inflammation and macrophage phenotype, yet IL-10 treatment shows interesting biologic effects including decreasing cell proliferation and increasing M2 macrophage polarization. IL-10 from the host is critical for preventing TEVG thrombosis and seeded BM-MNCs exert a significant anti-thrombotic effect in IL-10 KO mice.


Subject(s)
Blood Vessel Prosthesis , Thrombosis , Animals , Interleukin-10/genetics , Mice , Thrombosis/prevention & control , Tissue Engineering
17.
Front Neurosci ; 14: 403, 2020.
Article in English | MEDLINE | ID: mdl-32581664

ABSTRACT

Traumatic brain injury (TBI) contributes to hypocoagulopathy associated with prolonged bleeding and hemorrhagic progression. Bloodletting puncture therapy at hand twelve Jing-well points (BL-HTWP) has been applied as a first aid measure in various emergent neurological diseases, but the detailed mechanisms of the modulation between the central nervous system and systemic circulation after acute TBI in rodents remain unclear. To investigate whether BL-HTWP stimulation modulates hypocoagulable state and exerts neuroprotective effect, experimental TBI model of mice was produced by the controlled cortical impactor (CCI), and treatment with BL-HTWP was immediately made after CCI. Then, the effects of BL-HTWP on the neurological function, cerebral perfusion state, coagulable state, and cerebrovascular histopathology post-acute TBI were determined, respectively. Results showed that BL-HTWP treatment attenuated cerebral hypoperfusion and improve neurological recovery post-acute TBI. Furthermore, BL-HTWP stimulation reversed acute TBI-induced hypocoagulable state, reduced vasogenic edema and cytotoxic edema by regulating multiple hallmarks of coagulopathy in TBI. Therefore, we conclude for the first time that hypocoagulopathic state occurs after acute experimental TBI, and the neuroprotective effect of BL-HTWP relies on, at least in part, the modulation of hypocoagulable state. BL-HTWP therapy may be a promising strategy for acute severe TBI in the future.

18.
Ann Biomed Eng ; 48(6): 1683-1693, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32052320

ABSTRACT

The scarcity of data available on the best approach for pulmonary fetal valve replacement or implantation necessitate an investigation on whether practices using adult transcatheter valves could be translated to fetal applications. The objective of this study is to evaluate the hemodynamic characteristics and the turbulent properties of a fetal sized trileaflet transcatheter pulmonary valve in comparison with an adult balloon-expandable valve in order to assess the possibility of designing valves for fetal applications using dynamic similarity. A 6 mm fetal trileaflet valve and a 26 mm SAPIEN 3 valve were assessed in a pulse duplicator. Particle image velocimetry was performed. Pressure gradient (ΔP), effective orifice area (EOA), regurgitant fractions (RF), pinwheeling indices (PI) and turbulent stresses were evaluated. ΔP was 8.56 ± 0.139 and 7.76 ± 0.083 mmHg with fetal valve and SAPIEN respectively (p < 0.0001); EOA was 0.10 ± 0.0007 and 2.1 ± 0.025 cm2 with fetal valve and SAPIEN respectively (p < 0.0001); RF with the fetal valve was 2.35 ± 1.99% and with SAPIEN 10.92 ± 0.11% (p < 0.0001); PI with fetal valve was 0.404 ± 0.01 and with SAPIEN 0.37 ± 0.07; The flow regime with the fetal valve was turbulent and Reynolds numbers reached about 7000 while those with the SAPIEN reached about 20,000 at peak velocity. Turbulent stresses were significantly higher with fetal valve compared with SAPIEN. Instantaneous viscous shear stresses with fetal valve were 5.8 times higher than those obtained with SAPIEN and Reynolds shear stresses were 2.5 times higher during peak systole. The fetal valve implantation leads to a turbulent flow (specific to this particular type and design of valve) regime unlike what is expected of a small valve with different flow properties compared to adult valves.


Subject(s)
Fetus , Heart Valve Prosthesis Implantation , Heart Valves/physiology , Adult , Alloys , Aluminum , Heart Valve Prosthesis , Hemodynamics , Humans , Stress, Mechanical , Zinc
19.
Drug Dev Res ; 81(4): 491-500, 2020 06.
Article in English | MEDLINE | ID: mdl-31958155

ABSTRACT

Neuropilin-1 (NRP1) is emerging as an important molecule in immune signaling where it has been shown to modulate the actions of TGF-ß1 in macrophages and regulatory T cells. The development of cost-effective and reliable assays for NRP1 binding is therefore important. We synthesized three new NRP1 small molecule fluorophores and examined their performance as fluorescent polarization probes. One molecule DS108 exhibited favorable binding and fluorescent characteristics and allowed us to establish a simple assay suitable for medium to high throughput screening of small molecules.


Subject(s)
Fluorescent Dyes/metabolism , High-Throughput Screening Assays/methods , Neuropilin-1/metabolism , Fluorescent Dyes/chemical synthesis , Signal Transduction , Transforming Growth Factor beta1/metabolism
20.
JVS Vasc Sci ; 1: 57-67, 2020.
Article in English | MEDLINE | ID: mdl-34223286

ABSTRACT

BACKGROUND: Bioresorbable vascular grafts (BVGs) can transform biologically into active blood vessels and represent an alternative to traditional synthetic conduits, which are prone to complications such as infection and thrombosis. Although platelet-derived growth factors and c-Kit positive cells play an important role in smooth muscle cell (SMC) migration and proliferation in vascular injury, atherosclerosis, or allograft, their roles in the vascular remodeling process of an arterial BVG remains unknown. Thus, we assessed the neottisue formation on arterial BVG remodeling by administrating imatinib, which is both a platelet-derived growth factor receptor kinase inhibitor and c-Kit receptor kinase inhibitor, in a murine model. METHODS: BVGs were composed of an inner poly(L-lactic-co-ε-caprolactone) copolymer sponge layer and an outer electrospun poly(L-lactic acid) nanofiber layer, which were implanted into the infrarenal abdominal aortas of C57BL/6 mice. After graft implantation, saline or 100 mg/kg of imatinib was administrated intraperitoneally daily for 2 weeks (n = 20 per group). Five mice in each group were scheduled to be humanely killed at 3 weeks and 15 at 8 weeks, and BVGs were explanted for histologic assessments. RESULTS: Graft patency during the 8-week observational period was not significantly different between groups (control, 86.7% vs imatinib, 80.0%; P > .999). Neotissue formation consisting of endothelialization, smooth muscle proliferation, and deposition of collagen and elastin was not observed in either group at 3 weeks. Similar endothelialization was achieved in both groups at 8 weeks, but thickness and percent area of neotissue formation were significantly higher in the control group than in the imatinib group, (thickness, 30. 1 ± 7.2 µm vs 19.6 ± 4.5 µm [P = .001]; percent area, 9.8 ± 2.7% vs 6.8 ± 1.8% [P = .005]). Furthermore, SMC layer and deposition of collagen and elastin were better organized at 8 weeks in the control group compared with the imatinib group. The thickness of SMC layer and collagen fiber area were significantly greater at 8 weeks in the control group than in the imatinib group (P < .001 and P = .026, respectively). Because there was no difference in the inner diameter of explanted BVGs (831.7 ± 63.4 µm vs 841.8 ± 41.9 µm; P = .689), neotissue formation was thought to advance toward the outer portion of the BVG with degradation of the polymer scaffold. CONCLUSIONS: Imatinib attenuates neotissue formation during vascular remodeling in arterial bioresorbable vascular grafts (BVGs) by inhibiting SMC layer formation and extracellular matrix deposition. CLINICAL RELEVANCE: This study demonstrated that imatinib attenuated neotissue formation during vascular remodeling in arterial Bioresorbable vascular graft (BVG) by inhibiting smooth muscle cell formation and extracellular matrix deposition. In addition, as imatinib did not modify the inner diameter of BVG, neotissue advanced circumferentially toward the outer portion of the neovessel. Currently, BVGs have not yet been clinically applied to the arterial circulation. The results of this study are helpful for the design of BVG that can achieve an optimal balance between polymer degradation and neotissue formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...