Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 13(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34696487

ABSTRACT

Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385-400 and 401-420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.


Subject(s)
Norovirus/genetics , Norovirus/immunology , Amino Acid Sequence , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , Blood Group Antigens/genetics , Caliciviridae Infections/genetics , Capsid/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Epitopes/genetics , Epitopes/immunology , Gastroenteritis/virology , Genotype , Humans , Mice , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics
2.
Cell Discov ; 7(1): 71, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34408130

ABSTRACT

Massive production of efficacious SARS-CoV-2 vaccines is essential for controlling the ongoing COVID-19 pandemic. We report here the preclinical development of yeast-produced receptor-binding domain (RBD)-based recombinant protein SARS-CoV-2 vaccines. We found that monomeric RBD of SARS-CoV-2 could be efficiently produced as a secreted protein from transformed Pichia pastoris (P. pastoris) yeast. Yeast-derived RBD-monomer possessed functional conformation and was able to elicit protective level of neutralizing antibodies in mice. We further designed and expressed a genetically linked dimeric RBD protein in yeast. The engineered dimeric RBD was more potent than the monomeric RBD in inducing long-lasting neutralizing antibodies. Mice immunized with either monomeric RBD or dimeric RBD were effectively protected from live SARS-CoV-2 virus challenge even at 18 weeks after the last vaccine dose. Importantly, we found that the antisera raised against the RBD of a single SARS-CoV-2 prototype strain could effectively neutralize the two predominant circulating variants B.1.1.7 and B.1.351, implying broad-spectrum protective potential of the RBD-based vaccines. Our data demonstrate that yeast-derived RBD-based recombinant SARS-CoV-2 vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of SARS-CoV-2 vaccines to achieve global immunization.

3.
Emerg Microbes Infect ; 10(1): 954-963, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33929932

ABSTRACT

Human noroviruses are the dominant causative agent of acute viral gastroenteritis worldwide. During the winter of 2014-2015, genotype GII.17 cluster IIIb strains emerged as the leading cause of norovirus infection in Asia and later spread to other parts of the world. It is speculated that mutation at blockade epitopes may have resulted in virus escape from herd immunity, leading to the emergence of GII.17 cluster IIIb variants. Here, we identify a GII.17 cluster IIIb-specific blockade epitope by monoclonal antibody (mAb)-based epitope mapping. Four mAbs (designated as M1 to M4) were generated from mice immunized with virus-like particle (VLP) of a GII.17 cluster IIIb strain. Among them, M1 and M3 reacted specifically with the cluster IIIb VLP but not with the VLPs from clusters II or IIIa. Moreover, M1 and M3 dose-dependently blocked cluster IIIb VLP binding with its ligand, histo-blood group antigens (HBGAs). Epitope mapping revealed that M1 and M3 recognized the same highly exposed epitope consisting of residues 293-296 and 299 in the capsid protein VP1. Sequence alignment showed that the M1/M3 epitope sequence is highly variable among different GII.17 clusters whereas it is identical for cluster IIIIb strains. These data define a dominant blockade epitope of GII.17 norovirus and provide evidence that blockade epitope evolution contributes to the emergence of GII.17 cluster IIIb strains.


Subject(s)
Antibodies, Monoclonal/blood , Capsid Proteins/genetics , Epitope Mapping/methods , Norovirus/immunology , Amino Acid Motifs , Animals , Antibodies, Viral/blood , Blood Group Antigens/metabolism , Capsid Proteins/administration & dosage , Capsid Proteins/immunology , Epitopes/genetics , Epitopes/immunology , Female , Genetic Variation , Immunization , Mice , Norovirus/genetics , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology
4.
Front Microbiol ; 10: 2815, 2019.
Article in English | MEDLINE | ID: mdl-31866980

ABSTRACT

Parvoviruses are a diverse group of viruses that are capable of infecting a wide range of animals. In this study, we report the discovery of a novel parvovirus, tilapia parvovirus HMU-HKU, in the fecal samples of crocodiles and intestines of tilapia in Hainan Province, China. The novel parvovirus was firstly identified from crocodiles fed with tilapia using next-generation sequencing (NGS). Screening studies revealed that the prevalence of the novel parvovirus in crocodile feces samples fed on tilapia (75-86%) was apparently higher than that in crocodiles fed with chicken (4%). Further studies revealed that the prevalence of the novel parvovirus in tilapia feces samples collected at four areas in Hainan Province was between 40 and 90%. Four stains of the novel parvovirus were identified in this study based on sequence analyses of NS1 and all the four strains were found in tilapia in contrast only two of them were detected in crocodile feces. The nearly full-length genome sequence of the tilapia parvovirus HMU-HKU-1 was determined and showed less than 45.50 and 40.38% amino acid identity with other members of Parvoviridae in NS1 and VP1 genes, respectively. Phylogenetic analysis based on the complete helicase domain amino acid sequences showed that the tilapia parvovirus HMU-HKU-1 formed a relatively independent branch in the newly proposed genus Chaphamaparvovirus in the subfamily Hamaparvovirinae according to the ICTV's most recent taxonomic criteria for Parvoviridae classification. Tilapia parvovirus HMU-HKU-1 likely represented a new species within the new genus Chaphamaparvovirus. The identification of tilapia parvovirus HMU-HKU provides further insight into the viral and genetic diversity of parvoviruses and its infections in tilapia populations need to be evaluated in terms of pathogenicity and production losses in tilapia farming.

5.
Int J Parasitol Parasites Wildl ; 9: 317-321, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31338292

ABSTRACT

Wild rats (Rattus spp.) carry many zoonotic pathogens including Cryptosporidium. Due to the close proximity of rats to humans in urban environments, the potential for disease transmission is high. Cryptosporidium is a protozoan parasite which when ingested causes serious human illness. Despite its importance, genetic characterization of Cryptosporidium in wild rats in the Hainan province of China has not been performed. In this study, we analyzed the occurrence and genetics of Cryptosporidium in wild rats from Hainan, China. From December 2017 to October 2018, 150 wild rats were captured and fresh fecal material was collected from intestinal sections. Rat species were identified by PCR-based amplification and analysis of the vertebrate cytochrome b (cytb) gene. Cryptosporidium was examined by PCR amplification of the partial small subunit of ribosomal DNA (SSU rDNA). C. viatorum were subtyped by PCR analysis of the gp60 gene. A total of four rat species were identified including Asian house rats (Rattus tanezumi) (n = 46), brown rats (Rattus norvegicus) (n = 56), Edward's long-tailed rats (Leopoldamys edwardsi) (n = 38) and muridae (Niviventer fulvescens) (n = 10), with Cryptosporidium positive rates of 73.9%, 28.6%, 55.3% and 40.0%, respectively (average infection rate: 50.0%, 75/150. Sequence analysis confirmed the presence of four Cryptosporidium species and two genotypes including C. viatorum (n = 11); C. occultus (n = 2); C. muris (n = 1); and C. erinacei (n = 1); rat genotypes III (n = 13) and IV (n = 47). Three novel subtypes of C. viatorum were identified in 6 of the 11 infected Edward's long-tailed rats: XVcA2G1a (n = 4), XVcA2G1b (n = 1) and XVdA3 (n = 1). The identification of human pathogenic C. viatorum and zoonotic C. occultus, C. muris and C. erinacei, suggested that wild rats infected with Cryptosporidium pose a threat to human health. Taken together, these findings highlight the need to control the rat population in Hainan, China. The need to improve the public awareness of the risk of disease transmission from wild rats to humans is also highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL