Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(14): 15854-15860, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617703

ABSTRACT

The porous skeleton structure of oxidizers can effectively enlarge the contact area with fuels and boost the reactivity of thermites, but the overly complex preparation processes tend to limit their use to some extent. To overcome this issue, water-soluble starch and copper nitrate were used as a template to form a carbon skeleton copper oxide (C-CuO) after spray drying and calcination. By adding nanoaluminum into the spray drying process, the n-Al@C-CuO was prepared and compared with the physically mixed n-Al/C-CuO in the context. Scanning electron microscopy and differential scanning calorimetry were used to observe the morphology and analyze the thermal process. The pressure-time test and the electrostatic sensitivity test were used to measure the energy release properties and the safety of the thermites. Results indicated that the n-Al@C-CuO had 60.97 °C earlier initial exothermic temperature and 1.74 times higher peak pressure than that of the physically mixed sample. The n-Al@C-CuO was not ignited under 25 kV in the electrostatic sensitivity test, showing the great electrostatic safety of the sample. These findings are expected to facilitate the development of spray drying and promote energy release of traditional thermites.

2.
Inorg Chem ; 62(51): 21371-21378, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38047563

ABSTRACT

Revamping the structure of energy storage is an efficient strategy for striking a balance between the performance and sensitivity of energetic materials to achieve high energy and reduced sensitivity. In continuation of prior research, this study utilized the ligand 3,5-dimethyl-1H-pyrazole-4-carbonhydrazide (DMPZCA) and innovatively designed and synthesized the compound ECCs [Cu(HDMPZCA)2(ClO4)2](ClO4)2·2H2O (ECCs-1·2H2O). Compared with the former research, solvent-free compound ECCs-1 refers to an innovative material characterized by a dual structure involving ionic salts and coordination compounds. Due to these unique structures, ECCs-1 exhibits an increased [ClO4-] content, a higher oxygen balance constant (OB = -7.9%), and improved mechanical sensitivity (IS = 8 J, FS = 32 N). Theoretical calculations support the superior detonation performance of ECCs-1. Additionally, experimental results confirm its ignition capability through lower-threshold lasers and highlight the outstanding initiation potential and explosive power, making it a suitable candidate for primary explosives.

3.
Inorg Chem ; 62(42): 17417-17424, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827495

ABSTRACT

Transforming the energy storage structure is an effective approach to achieve a balance between the detonation performance and the sensitivity of energetic compounds, with a goal of high energy and low sensitivity. Building upon previous work, this study employed an isomeric compound 1H-pyrazole-3-carbohydrazide (3-PZCA) as a ligand and creatively designed the energetic coordination compound (ECC) Ag(3-HPZCA)2(ClO4)3 (ECC-1). It is a novel material with a dual structure of ionic salts and coordination compounds, which represents the first report of such a structure in Ag(I)-based ECCs. With its unique structures, ECC-1 exhibits a larger [ClO4-] content, a higher oxygen balance constant (OB = 0%), and superior mechanical sensitivity (IS = 13 J and FS = 40 N). Theoretical calculations indicate that ECC-1 has a higher detonation performance compared to previous work. Furthermore, the explosive experiment testing results demonstrate that it can be ignited by lower-threshold lasers and possesses excellent initiation capability and explosive power, making it suitable not only as a primary explosive but also as a secondary explosive.

4.
Dalton Trans ; 52(38): 13716-13723, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37706537

ABSTRACT

For energetic compounds, their structure determines their performance, and even minor variations in their structure can have a significant impact on their performance. The application scenarios for energetic materials are diverse, and their performance requirements vary as well. To investigate the influence of different substituent positions on the performance of primary explosives, we prepared two Ag(I)-based complexes, [Ag(2-IZCA)ClO4]n (ECPs-1) and [Ag(4-IZCA)ClO4]n (ECPs-2), using structurally isomeric ligands, 1H-imidazole-2-carbohydrazide (2-IZCA) and 1H-imidazole-4-carbohydrazide (4-IZCA). The structures were confirmed using infrared, elemental analysis, and single-crystal X-ray diffraction. Experimental results demonstrate that both ECPs exhibit good thermal stability. However, compared to ECPs-1, ECPs-2 exhibits a lower thermal initial decomposition temperature (Td = 210 °C), lower mechanical sensitivity (IS = 27 J, FS = 84 N), and more concentrated energy output. Although theoretical predictions suggest similar detonation velocities and pressures for both compounds, actual detonation performance tests indicate that ECPs-2 has stronger explosive power and initiating capability, with potential for use as a laser initiator (E = 126 mJ). The simple preparation method and inexpensive starting materials enrich the research on primary explosives.

5.
Small ; 19(42): e2302631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37329207

ABSTRACT

The requirements for high energy and green primary explosives are more and more stringent because of the rising demand in the application of micro initiation explosive devices. Four new energetic compounds with powerful initiation ability are reported and their performances are experimentally proven as designed, including non-perovskites ([H2 DABCO](H4 IO6 )2 ·2H2 O, named TDPI-0) and perovskitoid energetic materials (PEMs) ([H2 DABCO][M(IO4 )3 ]; DABCO=1,4-Diazabicyclo[2.2.2]octane, M=Na+ , K+ , and NH4 + for TDPI-1, -2, and -4, respectively). The tolerance factor is first introduced to guide the design of perovskitoid energetic materials (PEMs). In conjunction with [H2 DABCO](ClO4 )2 ·H2 O (DAP-0) and [H2 DABCO][M(ClO4 )3 ] (M=Na+ , K+ , and NH4 + for DAP-1, -2, and -4), the physiochemical properties of the two series are investigated between PEMs and non-perovskites (TDPI-0 and DAP-0). The experimental results show that PEMs have great advantages in improving the thermal stability, detonation performance, initiation capability, and regulating sensitivity. The influence of X-site replacement is illustrated by hard-soft-acid-base (HSAB) theory. Especially, TDPIs possess much stronger initiation capability than DAPs, which indicates that periodate salts are in favor of deflagration-to-detonation transition. Therefore, PEMs provide a simple and feasible method for designing advanced high energy materials with adjustable properties.

6.
Inorg Chem ; 62(24): 9695-9701, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37289637

ABSTRACT

In order to further explore the effect of ligands on the performance of primary explosives and gain a deeper understanding of the coordination mechanism, we designed furan-2-carbohydrazide (FRCA), a ligand, by using oxygen-containing heterocycles and carbohydrazide. Then, FRCA and Cu(ClO4)2 were used to synthesize coordination compounds [Cu(FRCA)2(H2O)(ClO4)2]·CH3OH (ECCs-1·CH3OH) and Cu(FRCA)2(H2O)(ClO4)2 (ECCs-1). The structure of the ECCs-1 was confirmed by single-crystal X-ray diffraction, IR and EA characterization. Further experiments on ECCs-1 show that ECCs-1 has good thermal stability, but is sensitive to mechanical stimuli (impact sensitivity = IS = 8 J, friction sensitivity = FS = 20 N). The predicted value of the detonation parameter is DEXPLO 5 = 6.6 km s-1, PEXPLO 5 = 18.8 GPa, but the ignition test, laser test, and lead plate detonation experiment show that ECCs-1 has excellent detonation performance, which is very worthy of attention.

7.
Langmuir ; 39(26): 9239-9245, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37356112

ABSTRACT

In order to preserve the coordinating ability of the hydrazide group, we used retrosynthetic analysis to design and synthesize ligand furan-2,5-dicarbohydrazide and its complex [Cu(FDCA)(H2O)ClO4]n(ClO4)n·nH2O (ECPs-1·H2O). The structure of the product was confirmed by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. The solvent-free target material ECPs-1 exhibited good thermal stability, sensitivity to mechanical stimuli, and excellent explosive properties. Furthermore, it had good potential for laser ignition and comparable detonation power to LA. The simple preparation method and inexpensive starting materials enriched the research on primary explosives.

8.
ACS Cent Sci ; 9(4): 742-747, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122449

ABSTRACT

The first example of [5,6,5]-tricyclic bistetrazole-fused energetic materials has been obtained through a one-step reaction from commercial and inexpensive 4,6-dichloro-5-nitropyrimidine. This one-step reaction including nucleophilic substitution, nucleophilic addition, cyclization, and electron transfer is rarely reported, and the reaction mechanism and scope is well investigated. Among target compounds, organic salts exhibit higher detonation velocities (D: 8898-9077 m s-1) and lower sensitivities (IS: 16-20 J) than traditional high energy explosive RDX (D = 8795 m s-1; IS = 7.5 J). In addition, the potassium salt of 5-azido-10-nitro-bis(tetrazolo)[1,5-c:5',1'-f]pyrimidin (DTAT-K) possesses excellent priming ability, comparable to traditional primary explosive Pb(N3)2, and ultralow minimum primary charge (MPC = 10 mg), which is the lowest MPC among the reported potassium-based primary explosives. The simple synthesis route, free of heavy metal and expensive raw materials, makes it promising to quickly realize this material in large-scale industrial production as a green primary explosive. This work accelerates the upgrade of green primary explosives and enriches future prospects for the design of energetic materials.

9.
ACS Omega ; 7(12): 10469-10475, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382280

ABSTRACT

The energetic performance of hexanitrohexaazaisowurtzitane (CL-20) was modulated with two energetic coordination polymers (ECPs), [Cu(ANQ)2(NO3)2] and [Ni(CHZ)3](ClO4)2, in this study by a two-step method. First, tannic acid polymerized in situ on the surface of CL-20 crystals. Then, [Cu(ANQ)2(NO3)2] and [Ni(CHZ)3](ClO4)2 were hydrothermally formed on the surface of CL-20/TA, respectively. Explosion performance tests show that the impact sensitivity of the coated structure CL-20/TA/[Cu(ANQ)2(NO3)2] is 58% less than that of CL-20 with no energy decrease. On the other hand, CL-20/TA/[Ni(CHZ)3](ClO4)2 can be initiated by a low laser energy of 107.3 mJ (Nd:YAG, 1064 nm, 6.5 ns pulse width), whereas CL-20 cannot be initiated by even 4000 mJ laser energy. This study shows that it is feasible to modify the performance of CL-20 by introducing energetic CPs with certain properties, like high energy insensitive, laser-sensitive, etc., which could be a prospective method for designing high energy insensitive energetic materials in the future.

10.
ACS Appl Mater Interfaces ; 14(14): 16718-16726, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35378032

ABSTRACT

A practical and brilliant way of preparing laser energetic coordination polymers based on crystallization chemistry and coordination theory is proposed in this paper. Design and successful synthesis of urazine (C2H4N4O2, H2ur, 1) by the theory of "cyclization of semicarbazides" are reported. Using the "acid-controlled self-crystallization" synthesis method, with H2ur as the ligand, we successfully synthesized [Ag(H2ur)2ClO4·H2O]n (3) and confirmed its composition and 1D structure. In addition, 3 was subjected to a simple drying operation to obtain a solvent-free [Ag(H2ur)2ClO4]n (4). Also, 4 has the best abilities in physics and chemistry, such as excellent thermal stability, insensitivity to light, mechanical insensitivity, and good corrosion resistance. In particular, thermogravimetric analysis-differential scanning calorimetry-Fourier transform infrared spectroscopy and powder X-ray diffraction were employed to analyze the thermal decomposition products of 4 and demonstrated that the main decomposed products are AgCl, N2, and H2O. Moreover, the calculated predictions show that 4 has an acceptable detonation performance (P = 22.5 GPa; D = 6.9 km s-1). Furthermore, the hot needle examination and detonation experiment show that 4 can be used as a primary explosive. More importantly, as a laser-detonated light-sensitive material, 4 has a significant application value in safety detonators (E = 100 mJ, P = 10 W, and τ = 10 ms).

11.
ACS Appl Mater Interfaces ; 14(8): 10594-10604, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35189684

ABSTRACT

The development of energetic materials is still facing a huge challenge because the relationship between energy and sensitivity is usually contradictory: high energy is always accompanied with low sensitivity. Here, a high-energy, low-sensitivity energetic polynitro-functionalized azopyrazole (TNAP) and its energetic salts have been synthesized. The structural characterization of these compounds was analyzed by elemental analysis, 1H and 13C NMR spectroscopies, and infrared spectroscopy. The single-crystal structure of compounds K2TNAP, TNAP, 5, and 6 was obtained by X-ray diffraction, and K2TNAP is a novel energetic metal-organic framework. The calculated detonation properties of TNAP (9040 m s-1 and 36.0 GPa) are superior to that of RDX (8796 m s-1 and 33.6 GPa). In addition, TNAP also has lower mechanical sensitivity (IS > 40 J, FS = 244 N) and higher decomposition temperature (Td = 221 °C) than RDX (IS = 7.4 J, FS = 120 N, and Td = 204 °C). These experimental results suggest that TNAP may become a new candidate for secondary explosives.

12.
Dalton Trans ; 49(15): 4675-4679, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32196058

ABSTRACT

A series of tetracyclic furazan-triazole compounds have been synthesized and fully characterized. The predicted detonation performance and tested mechanical sensitivities showed their high-energy performance and insensitive features. Quantum chemical calculations and crystal structure analysis were applied to study the intrinsic structure-property relationship among these compounds. In addition, the detonation test shows their promising potential as secondary explosives.

13.
ACS Appl Mater Interfaces ; 11(29): 26053-26059, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31282636

ABSTRACT

Exploring a green and safe primary explosive to replace very toxic and sensitive lead azide and lead styphnate takes great efforts. Here, a series of polynitro-functionalized triazolylfurazanate energetic materials have been reported. These new compounds were fully characterized by infrared, multinuclear NMR spectra, mass spectra, elemental analysis, and differential scanning calorimetry measurements. The structure of mono-diaminoguanidinium salt (17) was determined by single-crystal X-ray diffraction. Inspired by the high pressurization rate and fast energy release in triaminoguanidinium salts, some suitability evaluation for primary explosives has been applied. Di(triaminoguanidinium) 3-nitramino-4-(3-(dinitromethanidyl)-1,2,4-triazol-5-yl)furazanate exhibits an excellent gas-generating capability (Pmax = 9.03 Mpa) and combustion performance (dP/dtmax = 201.5 GPa s-1) close to fast thermite Al/CuO (Pmax = 8.49 Mpa, dP/dtmax = 252.2 GPa s-1). Moreover, the good initiation capacity (60 mg for 500 mg RDX) coupled with insensitivity in this compound (IS = 17.4 J, FS = 240 N, ESD > 0.225 J) make it a promising green and insensitive primary explosive.

14.
Dalton Trans ; 47(41): 14483-14490, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30207363

ABSTRACT

Using a simple and efficient approach, a series of fused triazolo-triazine compounds, namely, 2,5-dinitramide-7-amino-[1,2,4]triazolo[1,5-a][1,3,5]triazine (2) and its energetic salts (4-9, 11-13), were prepared by nitration of 2,5,7-triamine [1,2,4]triazolo[1,5-a][1,3,5]triazine (1) with 100% nitric acid, followed by reacting with the corresponding bases. All new compounds were comprehensively characterized. Structures of 2 and 4 were further confirmed by single crystal X-ray diffraction. Based on the measured densities and calculated heats of formation (Gaussian 09), detonation pressures and velocities were evaluated by EXPLO5, falling in the range of 21.5-34.2 GPa and 7823-9313 m s-1, respectively. Notably, impact and friction tests show that these compounds are very insensitive (IS > 40 J; FS > 360 N). Moreover, two representative compounds 5 and 6 with high decomposition temperature (5: 194 °C; 6: 199 °C), excellent detonation properties (vD = 9313, 9088 m s-1; P = 33.9, 34.1 GPa) as well as rarely low sensitivities (IS > 40 J; FS > 360 N) are promising candidates as high-energy and insensitive explosives.

15.
Angew Chem Int Ed Engl ; 57(8): 2081-2084, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29316117

ABSTRACT

The synthesis and characterization of the metal-free polyazido compounds 3,6-bis-(2-(4,6-diazido-1,3,5-triazin-2-yl)-hydrazinyl)-1,2,4,5-tetrazine (2) and 3,6-bis-(2-(4,6-diazido-1,3,5-triazin-2-yl)-diazenyl)-1,2,4,5-tetrazine (4) are presented. Two compounds were characterized by NMR spectra, IR spectroscopy, mass spectrometry, and differential scanning calorimetry (DSC). Additionally, the structure of 2 was confirmed by single-crystal X-ray diffraction. Compounds 2 and 4 exhibit measured densities (1.755 g cm-3 and 1.763 g cm-3 ), good thermal stabilities (194 °C and 189 °C), high heat of formation (2114 kJ mol-1 and 2820 kJ mol-1 ), and excellent detonation performance (D, 8365 m s-1 and 8602 m s-1 ; P, 26.8 GPa and 29.4 GPa). Furthermore, compounds 2 and 4 have been tested for their priming ability to detonate RDX. The results indicate that the title compound 2 is a potential environmentally friendly alternative candidate to lead-based primary explosives.

SELECTION OF CITATIONS
SEARCH DETAIL
...