Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Braz. J. Microbiol. ; 45(3): 937-943, July-Sept. 2014. graf, tab
Article in English | VETINDEX | ID: vti-28148

ABSTRACT

Strain P17 was a bacterial strain identified as Bacillus megaterium isolated from ground accumulating phosphate rock powder. The fermentation broth of strain P17 and the yellow-brown soil from Nanjing Agricultural University garden were collected to conduct this study. The simulation of fixed insoluble phosphorous forms after applying calcium superphosphate into yellow-brown soil was performed in pots, while available P and total P of soil were extremely positive correlative with those of groundwater. Then the dissolving effect of strain P17 on insoluble P of yellow-brown soil was studied. Results showed that Bacillus megaterium strain P17 had notable solubilizing effect on insoluble phosphates formed when too much water-soluble phosphorous fertilizer used. During 100 days after inoculation, strain P17 was dominant. Until the 120th day, compared with water addition, available P of strain P17 inoculation treated soil increased by 3 times with calcium superphosphate addition. Besides available P, pH, activity of acid and alkaline phosphatase and population of P-solubilizing microbes were detected respectively. P-solubilizing mechanism of P-solubilizing bacteria strain P17 seems to be a synergetic effect of pH decrease, organic acids, phosphatase, etc.


Subject(s)
Bacillus megaterium/metabolism , Calcium Phosphates/metabolism , Phosphorus/metabolism , Soil/chemistry , Bacillus megaterium/isolation & purification , Carboxylic Acids/metabolism , Hydrogen-Ion Concentration , Phosphoric Monoester Hydrolases/metabolism , Soil Microbiology
2.
Braz. j. microbiol ; Braz. j. microbiol;45(3): 937-943, July-Sept. 2014. graf, tab
Article in English | LILACS | ID: lil-727024

ABSTRACT

Strain P17 was a bacterial strain identified as Bacillus megaterium isolated from ground accumulating phosphate rock powder. The fermentation broth of strain P17 and the yellow-brown soil from Nanjing Agricultural University garden were collected to conduct this study. The simulation of fixed insoluble phosphorous forms after applying calcium superphosphate into yellow-brown soil was performed in pots, while available P and total P of soil were extremely positive correlative with those of groundwater. Then the dissolving effect of strain P17 on insoluble P of yellow-brown soil was studied. Results showed that Bacillus megaterium strain P17 had notable solubilizing effect on insoluble phosphates formed when too much water-soluble phosphorous fertilizer used. During 100 days after inoculation, strain P17 was dominant. Until the 120th day, compared with water addition, available P of strain P17 inoculation treated soil increased by 3 times with calcium superphosphate addition. Besides available P, pH, activity of acid and alkaline phosphatase and population of P-solubilizing microbes were detected respectively. P-solubilizing mechanism of P-solubilizing bacteria strain P17 seems to be a synergetic effect of pH decrease, organic acids, phosphatase, etc.


Subject(s)
Bacillus megaterium/metabolism , Calcium Phosphates/metabolism , Phosphorus/metabolism , Soil/chemistry , Bacillus megaterium/isolation & purification , Carboxylic Acids/metabolism , Hydrogen-Ion Concentration , Phosphoric Monoester Hydrolases/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL