Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Chem ; 10: 966274, 2022.
Article in English | MEDLINE | ID: mdl-36034671

ABSTRACT

Perovskite La2/3xLi3xTiO3 (LLTO) materials are promising solid-state electrolytes for lithium metal batteries (LMBs) due to their intrinsic fire-resistance, high bulk ionic conductivity, and wide electrochemical window. However, their commercialization is hampered by high interfacial resistance, dendrite formation, and instability against Li metal. To address these challenges, we first prepared highly dense LLTO pellets with enhanced microstructure and high bulk ionic conductivity of 2.1 × 10 - 4 S cm-1 at room temperature. Then, the LLTO pellets were coated with three polymer-based interfacial layers, including pure (polyethylene oxide) (PEO), dry polymer electrolyte of PEO-LITFSI (lithium bis (trifluoromethanesulfonyl) imide) (PL), and gel PEO-LiTFSI-SN (succinonitrile) (PLS). It is found that each layer has impacted the interface differently; the soft PLS gel layer significantly reduced the total resistance of LLTO to a low value of 84.88 Ω cm-2. Interestingly, PLS layer has shown excellent ionic conductivity but performs inferior in symmetric Li cells. On the other hand, the PL layer significantly reduces lithium nucleation overpotential and shows a stable voltage profile after 20 cycles without any sign of Li dendrite formation. This work demonstrates that LLTO electrolytes with denser microstructure could reduce the interfacial resistance and when combined with polymeric interfaces show improved chemical stability against Li metal.

2.
Nanomaterials (Basel) ; 11(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919105

ABSTRACT

Pulse ionized titania 3D-nanonetworks (T3DN) are emerging materials for fabricating binder-free and carbon-free electrodes for electrochemical energy storage devices. In this article, we investigate the effect of the one of the most important fabrication parameters, pulse frequency, for optimizing supercapacitor efficiency. A series of coin cell batteries with laser-induced electrodes was fabricated; the effect of pulse frequency on oxidation levels and material properties was studied using both experimental and theoretical analysis. Also, detailed electrochemical tests including cyclic voltammetry (CV), charge/discharge, and electrochemical impedance spectroscopy (EIS) were conducted to better understand the effect of pulse frequency on the electrochemical performance of the fabricated devices. The results show that at a frequency of 600 kHz, more T3DN were observed due to the higher temperature and stabler formation of the plasma plume, which resulted in better performance of the fabricated supercapacitors; specific capacitances of samples fabricated at 600 kHz and 1200 kHz were calculated to be 59.85 and 54.39 mF/g at 500 mV/s, respectively.

3.
ACS Omega ; 6(4): 2644-2654, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553882

ABSTRACT

There is an urgent need to improve the energy density of Li-ion batteries to enable mass-market penetration of electric vehicles, grid-scale energy storage, and next-generation consumer electronics. Silicon-graphite composites are currently the most plausible anode material to overcome the capacity limit of graphite or poor cycling performance of silicon. One serious and unrecognized limitation to the use of the composite as an anode is the incompatibility of hydrophobic (natural) graphite with the hydrophilic Si, which adversely affects battery performance. Herein, we report a novel, practical approach to modify the graphite resulting in the formation of a hard carbon coating and graphene sheets that give rise to higher compatibility with Si nanoparticles in the composite. Electrochemical and battery testing of the composite (10 wt % Si) anode shows higher reversible capacity (10% at C/12 and 20% at C/2) than the composite with unmodified graphite reaching ∼600 mAh/g with 95% retention after 100 cycles. The enhanced battery performance is explained by the uniform distribution of Si nanoparticles at the modified graphite surface due to the presence of graphene conductive networks and a thin, oxygen-rich, amorphous carbon layer on the surface of graphite particles, as evidenced by transmission electron microscopy (TEM) images and X-ray photoelectron spectra (XPS). This work provides a new approach to prepare graphite compatible materials that can work with hydrophilic components other than silicon for various applications other than batteries.

4.
ACS Omega ; 3(9): 11684-11690, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459264

ABSTRACT

The conventional polyvinylidene fluoride (PVDF) binder works well with the graphite anode, but when combined with silicon in composites to increase the energy density of Li-ion batteries, it results in severe capacity fade. Herein, by using scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses, we reveal that this failure stems from the loss of connectivity between the silicon (or its agglomerates), graphite, and PVDF binder because of the mechanical stresses experienced during battery cycling. More importantly, we reveal for the first time that the PVDF binder undergoes chemical decomposition during the cycling of not only the composite but also the Si-only or even graphite-only electrodes despite the excellent battery performance of the latter. Through X-ray photoemission electron microscopy and X-ray photoelectron spectroscopy techniques, LiF was identified as the predominant decomposition product. We show that the distribution of LiF in the electrodes due to the differences in the interactions between PVDF and either Si or graphite could correlate with the performance of the battery. This study shows that the most suitable binder for the composite electrode is a polymer with a good chemical interaction with both graphite and silicon.

SELECTION OF CITATIONS
SEARCH DETAIL