Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(1): e23726, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192779

ABSTRACT

Despite termite-induced soil mixing, summarizing termite-affected soil horizons is difficult, while the lack of accurate information on the pedogenic processes featured by termite bioturbation, topography, and land use limits an effort to address land degradation. A study was therefore carried out to quantitatively classify the soils and describe them based on rangeland uses. Based on cluster analysis, five representative soil profiles were studied at different topographical positions. Soil samples were collected from mounds and adjacent soils under enclosure, cultivated, and open-grazing land at the summit and foot slope positions. Agglomerative clustering showed low Ca2+, CEC, pH, and Mg2+ that described cambic horizons formed Cambisols at the summit and back slope. Eluviation-illuviation processes formed Luvisols on the toe slope and foot slope, whereas clay and high CEC described argic horizons. High Ca2+, CEC, pH, and Mg2+ described calcic horizons that formed Calcisols on the bottom slope. Divisive clustering showed that soil properties varied slightly between Cambisols and Luvisols at different topographies. However, the Luvisols on the toe slope were differentiated from the soil on the foot slope by predominant pedogenetic clay formation and a distinctly increased CEC. Calcisols are placed in other clusters due to their distinct properties. Agglomerative clustering reflected pedogenic processes and differentiated diagnostic horizons, while divisive clustering matched WRB classification. The results of this study also showed that termite-mediated soil properties were dictated by rangeland use, and pedogenesis was more noticeable on open-grazing land than on enclosure or cultivated land.

2.
J Environ Qual ; 52(4): 814-828, 2023.
Article in English | MEDLINE | ID: mdl-37117005

ABSTRACT

Ecological sanitation combined with thermophilic composting is a viable option to transform human excreta into a stabilized, pathogen-free, and nutrient-rich fertilizer. In combination with suitable bulking materials such as sawdust and straw, and additives such as biochar, this could also be a suitable waste management strategy for reducing greenhouse gas (GHG) emissions. In this study, we conducted a 143-days thermophilic composting of human excreta or cattle manure together with teff straw, organic waste, and biochar to investigate the effect that biochar has on GHG (CO2 , N2 O, and CH4 ) and NH3 emissions. The composting was performed in wooden boxes (1.5 × 1.5 × 1.4 m3 ), GHG were measured by using a portable FTIR gas analyzer and NH3 was sampled as ammonium in an H2 SO4 trap. We found that the addition of biochar significantly reduced CH4 emissions by 91% in the cattle manure compost, and N2 O emissions by 56%-57% in both humanure and cattle manure composts. Overall, non-CO2 GHG emissions were reduced by 51%-71%. In contrast, we did not observe a significant biochar effect on CO2 and NH3 emissions. Previous data already showed that it is possible to sanitize human fecal material when using this composting method. Our results suggest that thermophilic composting with biochar addition is a safe and cost-effective waste management practice for producing a nutrient-rich fertilizer from human excreta, while reducing GHG emissions at the same time.


Subject(s)
Composting , Greenhouse Gases , Humans , Cattle , Animals , Manure , Fertilizers , Charcoal , Methane/analysis , Soil , Nitrogen/analysis
3.
J Environ Qual ; 51(1): 19-32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34846756

ABSTRACT

Ecological sanitation via thermophilic composting could be a promising solution to the lack of sanitation and limited access to fertilizers, particularly in developing countries. Here, we conducted a 185-d thermophilic composting experiment with human excreta, and separately with cattle manure, mixed with kitchen scraps, teff [Eragrostis tef (Zuccagni) Trotter] straw, sawdust, and biochar (BC) by using an appropriate-technology approach. We followed the dynamics of the most important macronutrients (N, P, K), temperature, moisture, pH, electrical conductivity, cation exchange capacity, as well as content of organic matter, organic C, Ca, Mg, and micronutrients throughout the process. Low N (<47%), P (<9%), K (<11%), Ca (<18%), and Mg (<21%) losses and the temperature profile indicated a well-functioning thermophilic composting process. Compost temperature was >60 °C for 7, 6, 5, and 8 consecutive days for treatments containing human excreta, human excreta amended with BC, cattle manure, and cattle manure amended with BC, respectively, suggesting a final compost product free of pathogens. The compost mixture with cattle manure and BC reached a significantly higher temperature than the same variant without BC, with a maximum value of 65.9 °C on Day 6. For all treatments, final germination index values >100% indicated compost maturity and the absence of phytotoxic substances. Biochar addition reduced losses of organic matter (18-23%), C (33-42%), and N (49-100%) and decreased the amount of extractable NO3 - (32-36%) in the final compost. The tested ecological sanitation concept via thermophilic composting is thus a promising strategy to improve access to cheap fertilizer by safe and sustainable sanitation and waste management.


Subject(s)
Composting , Animals , Cattle , Charcoal , Humans , Manure , Nitrogen , Nutrients , Soil
SELECTION OF CITATIONS
SEARCH DETAIL