Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687063

ABSTRACT

As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.


Subject(s)
Molasses , Rhizopus oryzae , Canes , Industrial Waste , Lactic Acid , Carbon , Glucose
2.
Appl Biochem Biotechnol ; 195(1): 623-638, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36114924

ABSTRACT

Aurantiochytrium is a promising source of docosahexaenoic acid (DHA) and carotenoids, but their synthesis is influenced by environmental stress factors. In this study, the effect of different light intensities on the fermentation of DHA oil and carotenoids using Aurantiochytrium sp. TZ209 was investigated. The results showed that dark culture and low light intensity conditions did not affect the normal growth of cells, but were not conducive to the accumulation of carotenoids. High light intensity promoted the synthesis of DHA and carotenoids, but caused cell damage, resulting in a decrease of oil yield. To solve this issue, a light intensity gradient strategy was developed, which markedly improved the DHA and carotenoid content without reducing the oil yield. This strategy produced 30.16 g/L of microalgal oil with 15.11 g/L DHA, 221 µg/g astaxanthin, and 386 µg/g ß-carotene. This work demonstrates that strain TZ209 is a promising DHA producer and provides an efficient strategy for the co-production of DHA oil together with carotenoids.


Subject(s)
Carotenoids , Stramenopiles , Docosahexaenoic Acids , Fermentation , beta Carotene
3.
Bioresour Technol ; 271: 118-124, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30265951

ABSTRACT

The aim of this work was to reduce the algae-residue emission and make use of cane molasses as fermentation materials for docosahexaenoic acid (DHA) fermentaion by Schizochytrium sp., which further could cut the cost of DHA production. Algae-residue and cane molasses were respectively used as nitrogen and carbon sources to replace yeast extract and glucose. A significant DHA yield of 18.58 g/L was obtained using algae-residue, while cane molasses could not be used well as sole carbon source due to the presence of undesirable substance. A two-stage culture strategy with glucose followed by pretreated cane molasses as carbon source was developed, resulting in a final DHA yield of 15.22 g/L. This study therefore offers an economical and green strategy for DHA production by Schizochytrium sp.


Subject(s)
Canes , Docosahexaenoic Acids/biosynthesis , Stramenopiles/metabolism , Carbon/metabolism , Fermentation , Glucose/metabolism , Molasses , Nitrogen/metabolism
4.
Bioresour Technol ; 269: 32-39, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30149252

ABSTRACT

Docosahexaenoic acid (DHA) has wide-ranging benefits for normal development of the visual and nervous systems in infants. A sustainable source of DHA production through fermentation using Schizochytrium sp. has been developed. In this paper, we present the discovery of growth-uncoupled DHA production by Schizochytrium sp. and the development of corresponding kinetic models of fed-batch fermentations, which can be used to describe and predict the cell growth and substrate utilization as well as lipid and DHA production. Based on this kinetic model, a predictive model of multi-stage continuous fermentation process was established and used to analyze, optimize and design the process parameters. Optimal predicted processes of two-stage and three-stage continuous fermentation were developed and verified in lab-scale bioreactor based on the predicted process parameters. A successful three-stage continuous fermentation was achieved, which increased the lipid, DHA content and DHA productivity by 47.6, 64.3 and 97.1%, respectively, compared with two-stage continuous fermentation.


Subject(s)
Docosahexaenoic Acids/metabolism , Fermentation , Stramenopiles , Bioreactors , Kinetics
5.
Bioresour Technol ; 266: 482-487, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29990764

ABSTRACT

Fermentation wastewater (FW) and algal residue are major by-products of docosahexaenoic acid (DHA) fermentations utilizing Schizochytrium sp. In order to reduce production costs and environmental pollution, we explored the application of FW and algal-residue extract (AE) for DHA production. Components analysis showed that FW and AE contained some mineral elements and protein residues, respectively. When they were used for DHA fermentation, results showed that 20% replacement of fresh water by FW and 80% replacement of yeast extract nitrogen by AE reached DHA content of 22.23 g/L and 27.10 g/L, respectively. Furthermore, a novel medium that utilizes a mixture of FW and AE was applied for DHA fermentation, whereby the final DHA yield reached 28.45 g/L, 24.56% higher than conventional medium. The strategy of valorizing fermentation waste provides a new method for reducing the costs and reducing environmental pollution of microbial fermentations.


Subject(s)
Docosahexaenoic Acids/metabolism , Stramenopiles , Wastewater , Fermentation , Nitrogen
6.
Bioresour Technol ; 216: 422-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27262097

ABSTRACT

Oxygen uptake rate (OUR) and respiratory quotient (RQ) are key respiratory parameters for docosahexaenoic acid (DHA) production by Schizochytrium sp. HX-308 under dissolved oxygen limited conditions. To investigate the relationship of OUR and RQ with culture status, three independent cultures with different aeration rates were performed in a 50L bioreactor. OUR was found to be positively correlated with the aeration rate, which reflected the oxygen supply level in each culture. The highest biomass, reaching 124.5g/L, was achieved under the highest OUR. DHA content was found to be highly correlated with the RQ value, and the highest DHA content (44.85% in total fatty acids, w/w) was achieved in the highest RQ level, which implies that the polyketide synthase pathway was more active. OUR and RQ, which reflect the physiological state of microorganisms, are suggested as synergistic real-time bioprocess monitoring parameters for DHA fermentation.


Subject(s)
Bioreactors , Docosahexaenoic Acids/biosynthesis , Stramenopiles/metabolism , Biomass , Bioreactors/microbiology , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...