Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Neuro Oncol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721826

ABSTRACT

BACKGROUND: The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS: SMYD2-induced PGC1α methylation and followed nuclear export is confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis is validated by OCR, ECAR and intracranial glioma model. RESULTS: PGC1α methylation causes disabled mitochondrial function to maintain the stemness, thereby enhancing radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS: These findings unveil a novel regulatory pathway involving mitochondria that governs stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.

2.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507470

ABSTRACT

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/drug therapy , Iron/metabolism , Glioma/drug therapy , Brain Neoplasms/drug therapy , Neoplastic Stem Cells/pathology , Sulfur/metabolism , Sulfur/therapeutic use , Fumarates , Cell Line, Tumor , PTEN Phosphohydrolase/metabolism
3.
Nat Commun ; 14(1): 5913, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737247

ABSTRACT

Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment.


Subject(s)
Glioblastoma , Hypoxanthine Phosphoribosyltransferase , Ribonucleotide Reductases , Animals , Humans , Mice , AMP-Activated Protein Kinases , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Hypoxanthines , Mercaptopurine , Temozolomide/pharmacology , Hypoxanthine Phosphoribosyltransferase/genetics
4.
Cell Death Dis ; 14(7): 417, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438359

ABSTRACT

Long noncoding RNAs (lncRNAs) are involved in glioma initiation and progression. Glioma stem cells (GSCs) are essential for tumor initiation, maintenance, and therapeutic resistance. However, the biological functions and underlying mechanisms of lncRNAs in GSCs remain poorly understood. Here, we identified that LINC00839 was overexpressed in GSCs. A high level of LINC00839 was associated with GBM progression and radiation resistance. METTL3-mediated m6A modification on LINC00839 enhanced its expression in a YTHDF2-dependent manner. Mechanistically, LINC00839 functioned as a scaffold promoting c-Src-mediated phosphorylation of ß-catenin, thereby inducing Wnt/ß-catenin activation. Combinational use of celecoxib, an inhibitor of Wnt/ß-catenin signaling, greatly sensitized GSCs to radiation. Taken together, our results showed that LINC00839, modified by METTL3-mediated m6A, exerts tumor progression and radiation resistance by activating Wnt/ß-catenin signaling.


Subject(s)
Glioma , RNA, Long Noncoding , Wnt Signaling Pathway , Humans , beta Catenin/genetics , Cell Transformation, Neoplastic , Glioma/genetics , Glioma/radiotherapy , Methyltransferases/genetics , Neoplastic Stem Cells , RNA, Long Noncoding/genetics
5.
Cancer Res ; 83(7): 1094-1110, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36696363

ABSTRACT

Radiotherapy is a major component of standard-of-care treatment for gliomas, the most prevalent type of brain tumor. However, resistance to radiotherapy remains a major concern. Identification of mechanisms governing radioresistance in gliomas could reveal improved therapeutic strategies for treating patients. Here, we report that mitochondrial metabolic pathways are suppressed in radioresistant gliomas through integrated analyses of transcriptomic data from glioma specimens and cell lines. Decreased expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α), the key regulator of mitochondrial biogenesis and metabolism, correlated with glioma recurrence and predicted poor prognosis and response to radiotherapy of patients with glioma. The subpopulation of glioma cells with low-mitochondrial-mass exhibited reduced expression of PGC1α and enhanced resistance to radiotherapy treatment. Mechanistically, PGC1α was phosphorylated at serine (S) 636 by DNA-dependent protein kinase in response to irradiation. Phosphorylation at S636 promoted the degradation of PGC1α by facilitating its binding to the E3 ligase RNF34. Restoring PGC1α activity with expression of PGC1α S636A, a phosphorylation-resistant mutant, or a small-molecule PGC1α activator ZLN005 increased radiosensitivity of resistant glioma cells by reactivating mitochondria-related reactive oxygen species production and inducing apoptotic effects both in vitro and in vivo. In summary, this study identified a self-protective mechanism in glioma cells in which radiotherapy-induced degradation of PGC1α and suppression of mitochondrial biogenesis play a central role. Targeted activation of PGC1α could help improve response to radiotherapy in patients with glioma. SIGNIFICANCE: Glioma cells reduce mitochondrial biogenesis by promoting PGC1α degradation to promote resistance to radiotherapy, indicating potential therapeutic strategies to enhance radiosensitivity.


Subject(s)
Glioma , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Organelle Biogenesis , Mitochondria/metabolism , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Carrier Proteins/metabolism
6.
Clin Transl Med ; 12(12): e1136, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36504325

ABSTRACT

Cr(VI) is broadly applied in industry. Cr(VI) exposure places a big burden on public health, thereby increasing the risk of lung squamous cell carcinoma (LUSC). The mechanisms underlying Cr(VI)-induced LUSC remain largely elusive. Here, we report that the cancer stem cell (CSC)/tumour-initiating cell (TIC)-like subgroup within Cr(VI)-transformed bronchial epithelial cells (CrT) promotes lung cancer tumourigenesis. Mechanistically, Cr(VI) exposure specifically increases the expression levels of aldehyde dehydrogenase 1A1 (ALDH1A1), a CSC marker, through KLF4-mediated transcription. ALDH1A1 maintains self-renewal of CrT/TICs and facilitates the expression and secretion of EGF from CrT/TICs, which subsequently promotes the activation of EGFR signalling in differentiated cancer cells and tumour growth of LUSC. In addition, the ALDH1A1 inhibitor A37 and gemcitabine synergistically suppress LUSC progression. Importantly, high ALDH1A1 expression levels are positively correlated with advanced clinical stages and predict poor survival in LUSC patients. These findings elucidate how ALDH1A1 modulates EGF secretion from TICs to facilitate LUSC tumourigenesis, highlighting new therapeutic strategies for malignant lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Tics , Humans , Aldehyde Dehydrogenase/genetics , Epidermal Growth Factor , Neoplastic Processes , Lung Neoplasms/genetics , Carcinogenesis , Cell Transformation, Neoplastic/genetics , Lung , Aldehyde Dehydrogenase 1 Family , Retinal Dehydrogenase/genetics
8.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36270249

ABSTRACT

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Subject(s)
Glioblastoma , Telomerase , Animals , Mice , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , Fumarates , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Histones/genetics , Histones/metabolism , Mutation , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere Shortening , Transcription Factors/metabolism , Promoter Regions, Genetic
9.
Free Radic Biol Med ; 189: 157-168, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35921994

ABSTRACT

Radiotherapy is a standard-of-care treatment approach for glioblastoma (GBM) patients, but therapeutic resistance to radiotherapy remains a major challenge. Here we demonstrate that diallyl trisulfide (DATS) directly conjugates with cysteine (C) 32 and C35 (C32/35) residues of thioredoxin 1 (Trx1) through Michael addition reactions. Due to localizing in activity center of Trx1, the conjugation between DATS and C32/35 results in inhibition of Trx1 activity, therefore disturbing thioredoxin system and leading to accumulated levels of reactive oxygen species (ROS). High levels of Trx1 expression are correlated with poor prognosis of glioma patients. Notably, we reveal that DATS synergistically enhances irradiation (IR)-induced ROS accumulation, apoptosis, DNA damage, as well as inhibition of tumor growth of GBM cells. These findings highlight the potential benefits of DATS in sensitizing radiotherapy of GBM patients.


Subject(s)
Allyl Compounds , Glioblastoma , Allyl Compounds/pharmacology , Apoptosis , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , Humans , Reactive Oxygen Species/metabolism , Sulfides/pharmacology , Thioredoxins/genetics , Thioredoxins/metabolism
10.
Mol Cell ; 82(7): 1249-1260.e7, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35216667

ABSTRACT

Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.


Subject(s)
Carcinoma, Papillary , Carcinoma, Renal Cell , Fumarates , Kidney Neoplasms , PTEN Phosphohydrolase , Carcinogenesis , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/enzymology , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/enzymology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cysteine/metabolism , Drug Resistance, Neoplasm , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Fumarates/pharmacology , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/enzymology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Sunitinib/pharmacology
11.
Theranostics ; 11(4): 1763-1779, 2021.
Article in English | MEDLINE | ID: mdl-33408780

ABSTRACT

Rationale: Glioma stem-like cells (GSCs) contribute to temozolomide (TMZ) resistance in gliomas, although the mechanisms have not been delineated. Methods:In vitro functional experiments (colony formation assay, flow cytometric analysis, TUNEL assay) were used to assess the ability of extracellular vesicles (EVs) from hypoxic GSCs to promote TMZ resistance in glioblastoma (GBM) cells. RNA sequencing and quantitative Reverse Transcription-PCR were employed to identify the functional miRNA in hypoxic EVs. Chromatin immunoprecipitation assays were performed to analyze the transcriptional regulation of miRNAs by HIF1α and STAT3. RIP and RNA pull-down assays were used to validate the hnRNPA2B1-mediated packaging of miRNA into EVs. The function of EV miR-30b-3p from hypoxic GSCs was verified by in vivo experiments and analysis of clinical samples. Results: Hypoxic GSC-derived EVs exerted a greater effect on GBM chemoresistance than those from normoxic GSCs. The miRNA profiling revealed that miR-30b-3p was significantly upregulated in the EVs from hypoxic GSCs. Further, HIF1α and STAT3 transcriptionally induced miR-30b-3p expression. RNA immunoprecipitation and RNA-pull down assays revealed that binding of miR-30b-3p with hnRNPA2B1 facilitated its transfer into EVs. EV-packaged miR-30b-3p (EV-miR-30b-3p) directly targeted RHOB, resulting in decreased apoptosis and increased proliferation in vitro and in vivo. Our results provided evidence that miR-30b-3p in CSF could be a potential biomarker predicting resistance to TMZ. Conclusion: Our findings indicated that targeting EV-miR-30b-3p could provide a potential treatment strategy for GBM.


Subject(s)
Drug Resistance, Neoplasm , Extracellular Vesicles/metabolism , Glioblastoma/drug therapy , Hypoxia/physiopathology , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Neuro Oncol ; 23(4): 611-624, 2021 04 12.
Article in English | MEDLINE | ID: mdl-32926734

ABSTRACT

BACKGROUND: Acquired chemoresistance is a major challenge in the clinical treatment of glioblastoma (GBM). Circular RNAs have been verified to play a role in tumor chemoresistance. However, the underlying mechanisms remain unclear. The aim of this study was to elucidate the potential role and molecular mechanism of circular (circ)RNA ADP-ribosylation factor GTPase activating proteins with Src homology 3 domain, ankyrin repeat and Pleckstrin homology domain 1 (circASAP1) in temozolomide (TMZ) resistance of GBM. METHODS: We analyzed circRNA alterations in recurrent GBM tissues relative to primary GBM through RNA sequencing. Real-time quantitative reverse transcription PCR verified the expression of circASAP1 in tissues and cells. Knockdown and overexpressed plasmids were used to evaluate the effect of circASAP1 on GBM cell proliferation and TMZ-induced apoptosis. Mechanistically, fluorescent in situ hybridization, dual-luciferase reporter, and RNA immunoprecipitation assays were performed to confirm the regulatory network of circASAP1/miR-502-5p/neuroblastoma Ras (NRAS). An intracranial tumor model was used to verify our findings in vivo. RESULTS: CircASAP1 expression was significantly upregulated in recurrent GBM tissues and TMZ-resistant cell lines. CircASAP1 overexpression enhanced GBM cell proliferation and TMZ resistance, which could be reduced by circASAP1 knockdown. Further experiments revealed that circASAP1 increased the expression of NRAS via sponging miR-502-5p. Moreover, circASAP1 depletion effectively restored the sensitivity of TMZ-resistant xenografts to TMZ treatment in vivo. CONCLUSIONS: Our data demonstrate that circASAP1 exerts regulatory functions in GBM and that competing endogenous (ce)RNA-mediated microRNA sequestration might be a potential therapeutic strategy for GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Neuroblastoma , Adaptor Proteins, Signal Transducing , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , DEAD-box RNA Helicases , Drug Resistance, Neoplasm/genetics , Eukaryotic Initiation Factor-4A , GTP Phosphohydrolases , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , In Situ Hybridization, Fluorescence , Membrane Proteins , RNA, Circular , Temozolomide/pharmacology
13.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32412599

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is a most common aggressive malignant brain tumor. In recent years, targeted therapy has been increasingly applied in GBM treatment. METHODS: In the present study, GSE22866 was downloaded from gene expression omnibus (GEO). The genomic and clinical data were obtained from TCGA. The differentially expressed genes (DEGs) were identified and functional analysis was performed using clusterprofiler. Then, the co-expression network for the DEGs was established using the "WGCNA" package. Next, the protein-protein interaction (PPI) was assessed using Search Tool for the Retrieval of Interacting Genes Database (STRING) and hub modules in Cytoscape were screened. The Venn diagram was plotted to showcase the overlapped hub DEGs in PPI network and TCGA. Univariate and multivariate Cox proportional hazards regression analyses were performed to predict the risk score of each patient. Validations of the hub gene were completed in other databases. RESULTS: Functional analysis of the DEGs verified the involvement of DEGs in growth factor binding and gated channel activity. Among the 10 GBM-related modules, the red one displayed the strongest tie with GBM. VAMP2 was filtered out as the most intimate protein. The PPI network and TCGA were comprehensively analyzed. Finally, SNAP25 was identified as a real hub gene positively correlated with GBM prognosis. The result was validated by GEPIA, ONCOMINE database and qRT-PCR. CONCLUSIONS: SNAP25 might act as a GBM suppressor and a biomarker in GBM treatment.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Computational Biology , Glioblastoma/genetics , Synaptosomal-Associated Protein 25/genetics , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/mortality , Glioblastoma/therapy , Humans , Prognosis , Protein Interaction Maps , Risk Assessment , Risk Factors , Transcriptome
14.
Cancer Cell Int ; 20: 69, 2020.
Article in English | MEDLINE | ID: mdl-32158359

ABSTRACT

BACKGROUND: Glucose metabolic reprogramming is a significant hallmark of malignant tumors including GBM. Previous studies suggest that microRNAs play key roles in modulating this process in GBM cells. miR-181b acts as a tumor suppressor miRNA in influencing glioma tumorigenesis. Our previous results showed that miR-181b was down-regulated in glioma cells and tissues. METHODS: The extracellular acidification rate (ECAR), colony formation assay and levels of Glut1 and PKM2 were measured to assess the glucose metabolic and proliferation changes in GBM cells overexpressing miR-181b. Immunoblotting and luciferase reporter assay were performed to confirm the expression and role of SP1 as a direct target of miR-181b. ChIP assay was used to figure out the transcriptional regulation of SP1 on Glut1 and PKM2. In vivo study was examined for the role of miR-181b in GBM cells. RESULTS: MiR-181b overexpression significantly reduced the glucose metabolic and colony formation ability of GBM cells. And, SP1 was confirmed as a direct target of miR-181b while upregulation of SP1 could reverse the influence of overexpression of miR-181b. Furthermore, Glut1 and PKM2 could be regulated by SP1. Finally, miR-181b could inhibit the tumor growth in vivo. CONCLUSIONS: Our article demonstrated the inhibitory effect of miR-181b on glucose metabolism and proliferation in GBM by suppressing SP1 expression.

15.
Mol Cancer ; 19(1): 28, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32039732

ABSTRACT

BACKGROUND: Accumulating evidence shows that long noncoding RNAs (lncRNAs) are important regulator molecules involved in diverse biological processes. Acquired drug resistance is a major challenge in the clinical treatment of glioblastoma (GBM), and lncRNAs have been shown to play a role in chemotherapy resistance. However, the underlying mechanisms by which lncRNA mediates TMZ resistance in GBM remain poorly characterized. METHODS: Quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization assays were used to detect small nucleolar RNA host gene 12 (SNHG12) levels in TMZ-sensitive and TMZ-resistant GBM cells and tissues. The effects of SNHG12 on TMZ resistance were investigated through in vitro assays (western blots, colony formation assays, flow cytometry assays, and TUNEL assays). The mechanism mediating the high expression of SNHG12 in TMZ-resistant cells and its relationships with miR-129-5p, mitogen-activated protein kinase 1 (MAPK1), and E2F transcription factor 7 (E2F7) were determined by bioinformatic analysis, bisulfite amplicon sequencing, methylation-specific PCR, dual luciferase reporter assays, chromatin immunoprecipitation assays, RNA immunoprecipitation assays, immunofluorescence, qRT-PCR, and western blot. For in vivo experiments, an intracranial xenograft tumor mouse model was used to investigate SNHG12 function. RESULTS: SNHG12 was upregulated in TMZ-resistant cells and tissues. Overexpression of SNHG12 led to the development of acquired TMZ resistance, while knockdown of SNHG12 restored TMZ sensitivity. An abnormally low level of DNA methylation was detected within the promoter region of SNHG12, and loss of DNA methylation made this region more accessible to the Sp1 transcription factor (SP1); this indicated that methylation and SP1 work together to regulate SNHG12 expression. In the cytoplasm, SNHG12 served as a sponge for miR-129-5p, leading to upregulation of MAPK1 and E2F7 and endowing the GBM cells with TMZ resistance. Disinhibition of MAPK1 regulated TMZ-induced cell apoptosis and the G1/S cell cycle transition by activating the MAPK/ERK pathway, while E2F7 dysregulation was primarily associated with G1/S cell cycle transition. Clinically, SNHG12 overexpression was associated with poor survival of GBM patients undergoing TMZ treatment. CONCLUSION: Our results suggest that SNHG12 could serve as a promising therapeutic target to surmount TMZ resistance, thereby improving the clinical efficacy of TMZ chemotherapy.


Subject(s)
DNA Methylation , Drug Resistance, Neoplasm , E2F7 Transcription Factor/metabolism , Glioblastoma/pathology , MicroRNAs/genetics , Mitogen-Activated Protein Kinase 1/metabolism , RNA, Long Noncoding/genetics , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , E2F7 Transcription Factor/genetics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinase 1/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Front Oncol ; 10: 611699, 2020.
Article in English | MEDLINE | ID: mdl-33718112

ABSTRACT

PURPOSE: Glioblastoma multiforme (GBM) is one of the deadliest tumors, which is involved in numerous dysregulated microRNAs including miR-137. However, the mechanism of how miR-137 suppression associated with cancer progression and chemoresistance still remains to be elucidated. METHODS: Quantitative reverse transcriptase-PCR (qRT-PCR), DNA methylation analysis, cell proliferation assay, flow cytometric analysis, invasion assay, in situ tumor formation experiment were performed to test the expression levels and functions of miR-137 in GBM. Bioinformatics analysis, luciferase reporter assay, qRT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry assay were used to identify and verify the target of miR-137. RESULTS: We found that miR-137 was downregulated in primary and recurrent GBM compared with normal brain tissues. Overexpression of miR-137 inhibited cell invasion and enhanced cell chemosensitivity to temozolomide (TMZ) by directly targeting low-density lipoprotein receptor-related protein 6 (LRP6) in GBM. Forced expression of LRP6 cDNA without its 3'-UTR region partly restored the effects of miR-137 in vitro and in vivo. Hypoxia-induced miR-137 methylation was responsible for the miR-137 suppression, leading to the cell chemoresistance and poor prognosis of GBM. CONCLUSIONS: These findings demonstrated the detailed molecular mechanism of miR-137 in regulating GBM growth and chemoresistance in hypoxia microenvironment, suggesting the potentiality of miR-137 as a therapeutic target for GBM.

17.
Am J Transl Res ; 11(7): 4584-4601, 2019.
Article in English | MEDLINE | ID: mdl-31396362

ABSTRACT

Glioma is one of the most prevalent primary malignant brain tumours among adults, and accumulating evidence has shown that dysregulation of microRNAs (miRNAs) is associated with various types of cancers, including glioma. It is necessary to gain a better understanding of the roles and mechanisms of action of miRNAs in WNT-driven glioblastoma multiforme (GBM). Here, we report that miR-206 inhibits the WNT/ß-catenin pathway by directly targeting Frizzled 7 (FZD7) mRNA and functions as a tumour suppressor in glioma. The expression of miR-206 in human glioma samples and glioma cells was assessed by reverse-transcription quantitative PCR, fluorescence in situ hybridisation, and histological analysis. Cell Counting Kit-8, colony formation, 5-ethynyl-2'-deoxyuridine incorporation, flow-cytometric, wound healing, Transwell invasion, and three-dimensional migration assays were performed to examine glioma cell proliferation, migration, and invasion in vitro. The effects of miR-206 in vivo were investigated in a xenograft nude-mouse model. MiR-206 expression was significantly lower in glioma specimens than in normal control samples. FZD7 was confirmed as a direct target gene of miR-206. GBM cell proliferation, migration, and invasion were blocked after restoration of miR-206 expression. Moreover, intracranial glioma models revealed an inhibitory effect of miR-206 on intracranial glioma tumour growth. Our results suggest that miR-206 plays a key role in the blockade of the WNT/ß-catenin signalling pathway by down-regulating FZD7 and may be a promising therapeutic agent against malignant glioma and other WNT-driven tumours.

18.
J Exp Clin Cancer Res ; 38(1): 166, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992025

ABSTRACT

BACKGROUND: Acquired drug resistance is a constraining factor in clinical treatment of glioblastoma (GBM). However, the mechanisms of chemoresponsive tumors acquire therapeutic resistance remain poorly understood. Here, we aim to investigate whether temozolomide (TMZ) resistance of chemoresponsive GBM was enhanced by long non-coding RNA SBF2 antisense RNA 1 (lncRNA SBF2-AS1) enriched exosomes. METHOD: LncSBF2-AS1 level in TMZ-resistance or TMZ-sensitive GBM tissues and cells were analyzed by qRT-PCR and FISH assays. A series of in vitro assay and xenograft tumor models were performed to observe the effect of lncSBF2-AS1 on TMZ-resistance in GBM. CHIP assay were used to investigate the correlation of SBF2-AS1 and transcription factor zinc finger E-box binding homeobox 1 (ZEB1). Dual-luciferase reporter, RNA immunoprecipitation (RIP), immunofluorescence and western blotting were performed to verify the relation between lncSBF2-AS1, miR-151a-3p and XRCC4. Comet assay and immunoblotting were performed to expound the effect of lncSBF2-AS1 on DNA double-stand break (DSB) repair. A series of in vitro assay and intracranial xenografts tumor model were used to determined the function of exosomal lncSBF2-AS1. RESULT: It was found that SBF2-AS1 was upregulated in TMZ-resistant GBM cells and tissues, and overexpression of SBF2-AS1 led to the promotion of TMZ resistance, whereas its inhibition sensitized resistant GBM cells to TMZ. Transcription factor ZEB1 was found to directly bind to the SBF2-AS1 promoter region to regulate SBF2-AS1 level and affected TMZ resistance in GBM cells. SBF2-AS1 functions as a ceRNA for miR-151a-3p, leading to the disinhibition of its endogenous target, X-ray repair cross complementing 4 (XRCC4), which enhances DSB repair in GBM cells. Exosomes selected from temozolomide-resistant GBM cells had high levels of SBF2-AS1 and spread TMZ resistance to chemoresponsive GBM cells. Clinically, high levels of lncSBF2-AS1 in serum exosomes were associated with poor response to TMZ treatment in GBM patients. CONCLUSION: We can conclude that GBM cells remodel the tumor microenvironment to promote tumor chemotherapy-resistance by secreting the oncogenic lncSBF2-AS1-enriched exosomes. Thus, exosomal lncSBF2-AS1 in human serum may serve as a possible diagnostic marker for therapy-refractory GBM.


Subject(s)
DNA-Binding Proteins/genetics , Glioblastoma/drug therapy , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Animals , Biomarkers, Tumor/blood , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Breaks, Double-Stranded/drug effects , Drug Resistance, Neoplasm/genetics , Exosomes/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/blood , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Temozolomide/administration & dosage , Temozolomide/adverse effects , Xenograft Model Antitumor Assays , Zinc Finger E-box-Binding Homeobox 1/genetics
19.
EBioMedicine ; 42: 238-251, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30917935

ABSTRACT

BACKGROUND: Although temozolomide (TMZ) resistance is a significant clinical problem in glioblastoma (GBM), its underlying molecular mechanisms are poorly understood. In this study, we identified the role of exosomal microRNAs (miRNAs) from TMZ-resistant cells as important mediators of chemoresistance in GBM cells. METHODS: Exosomes were isolated from TMZ-resistant GBM cells and characterized via scanning electron microscopy (SEM). Expression levels of miR-1238 in GBM cell lines and their exosomes, clinical tissues, and sera were evaluated by RT-qPCR. In vitro and in vivo experiments were performed to elucidate the function of exosomal miR-1238 in TMZ resistance in GBM cells. Co-immunoprecipitation assays and western blot analysis were used to investigate the potential mechanisms of miR-1238/CAV1 that contribute to TMZ resistance. FINDINGS: MiR-1238 levels were higher in TMZ-resistant GBM cells and their exosomes than in sensitive cells. Higher levels of miR-1238 were found in the sera of GBM patients than in healthy people. The loss of miR-1238 may sensitize resistant GBM cells by directly targeting the CAV1/EGFR pathway. Furthermore, bioactive miR-1238 may be incorporated into the exosomes shed by TMZ-resistant cells and taken up by TMZ-sensitive cells, thus disseminating TMZ resistance. INTERPRETATION: Our findings establish that miR-1238 plays an important role in mediating the acquired chemoresistance of GBM and that exosomal miR-1238 may confer chemoresistance in the tumour microenvironment. These results suggest that circulating miR-1238 serves as a clinical biomarker and a promising therapeutic target for TMZ resistance in GBM. FUND: This study was supported by the National Natural Science Foundation of China (No·81402056, 81472362, and 81772951) and the National High Technology Research and Development Program of China (863) (No·2012AA02A508).


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Exosomes/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , MicroRNAs/genetics , Temozolomide/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Biological Transport , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Circulating MicroRNA , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Flow Cytometry , Genes, Reporter , Humans , Male , Mice , MicroRNAs/metabolism , RNA Interference , Signal Transduction
20.
Cell Physiol Biochem ; 50(1): 233-245, 2018.
Article in English | MEDLINE | ID: mdl-30282068

ABSTRACT

BACKGROUND/AIMS: Glioma is one of the most devasting tumors and confers dismal prognosis. Long noncoding RNAs(lncRNAs) have emerged as important regulators in various tumors including glioma. A classic lncRNA-H19, which is found to be highly expressed in human glioma tissues and cell lines, and is associated with tumor progression thus predicating clinical outcomes in glioma patients. However, the overall biological functions and their mechanism of H19 in glioma are not fully understood. METHODS: Firstly, we analyzed H19 alterations in different grades of glioma tissues through an analysis of 5 sequencing datasets and qRT-PCR was performed to confirm the results. Next, we evaluated the effect of H19 on glioma cells migration, invasion and EMT process. Luciferase assays and RIP assays were employed to figure out the correlation of H19 and SOX4. RESULTS: H19 was overexpressed in glioma tissues. Down-regulation of H19 led to the inhibition of migration, invasion and EMT process with a reduction in N-cadherin and Vimentin. H19 and SOX4 are both direct target of miR-130a-3p. H19 could compete with SOX4 via sponging miR-130a-3p. CONCLUSION: Taken together, these results provide a possible function of H19 as an oncogene in glioma tissues and provide a potential new therapeutic strategy for human glioma.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Glioma/drug therapy , Glioma/genetics , Glioma/mortality , Humans , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...