Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38644354

ABSTRACT

BACKGROUND: There are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets. METHODS: We integrated druggable genome data, cis-eQTL/cis-pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia-related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome-wide MR (Phe-MR) approach and investigated actionable drugs for target genes using available databases. RESULTS: MR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA-DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up-regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007-0.018, P = 1.2*10-5) and higher grip strength (OR: 0.96, 95% CI: 0.94-0.98, P = 4.2*10-5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21-0.26, P = 1.8*10-94), higher grip strength (OR: 0.82, 95% CI: 0.75-0.90, P = 2.1*10-5), and faster walking pace (beta: 0.03, 95% CI: 0.02-0.05, P = 8.5*10-6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06-0.11, P = 6.1*10-13; blood pQTL, beta: 0.05, 95% CI: 0.03-0.07, P = 3.8*10-09)], as well as the down-regulation of HLA-DRA [lower ALM (beta: -0.09, 95% CI: -0.11 to -0.08, P = 5.4*10-36) and lower grip strength (OR: 1.13, 95% CI: 1.07-1.20, P = 1.8*10-5)] and COL15A1 [higher ALM (muscle eQTL, beta: -0.07, 95% CI: -0.10 to -0.04, P = 3.4*10-07; blood pQTL, beta: -0.05, 95% CI: -0.06 to -0.03, P = 1.6*10-07)], decreased the risk of sarcopenia. AURKA in blood (beta: -0.16, 95% CI: -0.22 to -0.09, P = 2.1*10-06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10-05) tissues showed an inverse relationship with sarcopenia risk. The Phe-MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively. CONCLUSIONS: Our research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA-DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.

2.
Heliyon ; 10(8): e27422, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644883

ABSTRACT

Background: Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods: Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results: Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions: The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.

3.
Mol Neurobiol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324182

ABSTRACT

Observational studies have faced challenges in identifying replicable causes for amyotrophic lateral sclerosis (ALS). To address this, we employed an unbiased and data-driven approach to discover and explore potential causal exposures using two-sample Mendelian randomization (MR) analyses. In the phenotype discovery stage, we assessed 3948 environmental exposures from the UK Biobank and utilized ALS summary statistics (Europeans, 20,806 cases, 59,804 controls) as the outcome within a phenome-wide MR pipeline. Through a range of sensitivity analyses, two medication traits were identified to be protective for ALS. In the target exploration stage, we further conducted drug target MR analyses using the latest and trans-ethnic summary data on lipid-related traits and ALS (Europeans, 27,205 cases, 110,881 controls; East Asians, 1234 cases, 2850 controls). Our aim was to explore potential causal drug targets through six lipid-modifying effects. These comprehensive analyses revealed significant findings. Specifically, "cholesterol-lowering medication" and "atorvastatin" survived predefined criteria in the phenotype discovery stage and exhibited a protective effect on ALS. Further in the target exploration stage, we demonstrated that the therapeutic effect of APOB through LDL-lowering was associated with reduced ALS liability in Europeans (OR = 0.835, P = 5.61E - 5). Additionally, the therapeutic effect of APOA1 and LDLR through TC-lowering was associated with reduced ALS liability in East Asians (APOA1, OR = 0.859, P = 5.38E - 4; LDLR, OR = 0.910, P = 2.73E - 5). Overall, we propose potential protective effects of cholesterol-lowering drugs or statins on ALS risk from thousands of exposures. Our research also suggests APOB, APOA1, and LDLR as novel therapeutic targets for ALS and supports their potential protective mechanisms may be mediated by LDL-lowering or TC-lowering effects.

4.
NPJ Parkinsons Dis ; 9(1): 146, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865667

ABSTRACT

Genome­wide association studies (GWASs) have revealed numerous loci associated with Parkinson's disease (PD). However, some potential causal/risk genes were still not revealed and no etiological therapies are available. To find potential causal genes and explore genetically supported drug targets for PD is urgent. By integrating the expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets from multiple tissues (blood, cerebrospinal fluid (CSF) and brain) and PD GWAS summary statistics, a pipeline combing Mendelian randomization (MR), Steiger filtering analysis, Bayesian colocalization, fine mapping, Protein-protein network and enrichment analysis were applied to identify potential causal genes for PD. As a result, GPNMB displayed a robust causal role for PD at the protein level in the blood, CSF and brain, and transcriptional level in the brain, while the protective role of CD38 (in brain pQTL and eQTL) was also identified. We also found inconsistent roles of DGKQ on PD between protein and mRNA levels. Another 9 proteins (CTSB, ARSA, SEC23IP, CD84, ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A) were associated with the risk for PD based on only a single pQTL after multiple corrections. We also identified some proteins' interactions with known PD causative genes and therapeutic targets. In conclusion, this study suggested GPNMB, CD38, and DGKQ may act in the pathogenesis of PD, but whether the other proteins involved in PD needs more evidence. These findings would help to uncover the genes underlying PD and prioritize targets for future therapeutic interventions.

5.
J Neurol Neurosurg Psychiatry ; 94(11): 954-961, 2023 11.
Article in English | MEDLINE | ID: mdl-37349091

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia. Currently, there are no effective disease-modifying treatments for AD. Mendelian randomisation (MR) has been widely used to repurpose licensed drugs and discover novel therapeutic targets. Thus, we aimed to identify novel therapeutic targets for AD and analyse their pathophysiological mechanisms and potential side effects. METHODS: A two-sample MR integrating the identified druggable genes was performed to estimate the causal effects of blood and brain druggable expression quantitative trait loci (eQTLs) on AD. A repeat study was conducted using different blood and brain eQTL data sources to validate the identified genes. Using AD markers with available genome-wide association studies data, we evaluated the causal relationship between established AD markers to explore possible mechanisms. Finally, the potential side effects of the druggable genes for AD treatment were assessed using a phenome-wide MR. RESULTS: Overall, 5883 unique druggable genes were aggregated; 33 unique potential druggable genes for AD were identified in at least one dataset (brain or blood), and 5 were validated in a different dataset. Among them, three prior druggable genes (epoxide hydrolase 2 (EPHX2), SERPINB1 and SIGLEC11) reached significant levels in both blood and brain tissues. EPHX2 may mediate the pathogenesis of AD by affecting the entire hippocampal volume. Further phenome-wide MR analysis revealed no potential side effects of treatments targeting EPHX2, SERPINB1 or SIGLEC11. CONCLUSIONS: This study provides genetic evidence supporting the potential therapeutic benefits of targeting the three druggable genes for AD treatment, which will be useful for prioritising AD drug development.


Subject(s)
Alzheimer Disease , Serpins , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Genome-Wide Association Study , Brain , Hippocampus , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...