Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters










Publication year range
1.
J Pharm Anal ; 14(2): 177-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38464781

ABSTRACT

Inflammatory bowel disease (IBD) is a serious disorder, and exploration of active compounds to treat it is necessary. An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata (Desv.) Spring, which contained galacturonic acid, galactose, xylose, arabinose, and rhamnose with the main chain structure of →4)-α-d-GalAp-(1→ and →6)-ß-d-Galp-(1→ and the branched structure of →5)-α-l-Araf-(1→ . Animal experiments showed that compared with Model group, SUSP-4 significantly improved body weight status, disease activity index (DAI), colonic shortening, and histopathological damage, and elevated occludin and zonula occludens protein 1 (ZO-1) expression in mice induced by dextran sulfate sodium salt (DSS). 16S ribosomal RNA (rRNA) sequencing indicated that SUSP-4 markedly downregulated the level of Akkermansia and Alistipes. Metabolomics results confirmed that SUSP-4 obviously elevated thiamine levels compared with Model mice by adjusting thiamine metabolism, which was further confirmed by a targeted metabolism study. Fecal transplantation experiments showed that SUSP-4 exerted an anti-IBD effect by altering the intestinal flora in mice. A mechanistic study showed that SUSP-4 markedly inhibited macrophage activation by decreasing the levels of phospho-nuclear factor kappa-B (p-NF-κB) and cyclooxygenase-2 (COX-2) and elevating NF-E2-related factor 2 (Nrf2) levels compared with Model group. In conclusion, SUSP-4 affected thiamine metabolism by regulating Akkermania and inhibited macrophage activation to adjust NF-κB/Nrf2/COX-2-mediated inflammation and oxidative stress against IBD. This is the first time that plant polysaccharides have been shown to affect thiamine metabolism against IBD, showing great potential for in-depth research and development applications.

2.
Int J Biol Macromol ; 260(Pt 1): 129455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232876

ABSTRACT

Plumbago zeylanica L., a traditional Chinese medicine, has anti-bacterial and anti-inflammatory effects, and it is critical important to explore the chemical compounds and evaluate their biological actions from the medicinal plant. However, the chemical structure and biological activities of polysaccharides from P. zeylanica. were still poorly understood. In this study, two water-soluble polysaccharides named WPZP-2-1 and WPZP-2-2 were purified from P. zeylanica L. Chemical and spectroscopic tests showed that the main chain of WPZP-2-1 was →4)-α-D-GalpA-(1 â†’ 2)-α-L-Rhap-(1→, and the branch chain was galactose or arabinose. The main chain of WPZP-2-2 was composed of →4)-α-D-GalpA-(1 â†’ 2)-α-L-Rhap-(1→, and the O-2 and O-3 of →4)-α-D-GalpA had a small amount of acetylation. In addition, in vitro test showed that WPZP-2-1 and WPZP-2-2 significantly improved the inflammatory damage of LPS + IFN-γ-induced THP-1 cells via reducing the protein levels of CD14, TLR4 and MyD88, thereby promoting IL-10 expression and inhibiting the mRNA levels of TNF-α and IL-1ß. Those findings indicated that WPZP-2-1 and WPZP-2-2 from the plant should be served as the potential anti-inflammatory agents.


Subject(s)
Plants, Medicinal , Plumbaginaceae , Plumbaginaceae/chemistry , Polysaccharides/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Extracts/chemistry
3.
J Control Release ; 366: 182-193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145659

ABSTRACT

Intestinal ischemia reperfusion injury (II/R injury) is a common and intractable pathophysiological process in critical patients, for which exploring new treatments and mechanisms is of great importance to improve treatment outcomes. Apigenin-7-O-Glucoside (AGL) is a sugar derivative of apigenin natural product with various pharmacological activities to protect against intestinal diseases. In this study, we synthesized two amphiphilic molecules, namely DTPA-N10-10 and mPEG-TK-DA, which can scavenge free radicals and reactive oxygen species (ROS). They were successfully encapsulated AGL through self-assembly, resulting in the formation of multi-site ROS scavenging nanoparticles called PDN@AGL. In vitro and in vivo experiments demonstrated that PDN@AGL could protect intestinal tissues by reducing lipid peroxidation, lowering ROS levels and inhibiting ferroptosis during II/R injury. Furthermore, our study revealed, for the first time, that the regulation of the ATF3/SLC7A11 pathway by PDN@AGL may play a crucial role in mitigating II/R injury. In conclusion, our study confirmed the beneficial effects of PDN@AGL in combating II/R injury through the ATF3/SLC7A11-mediated regulation of ferroptosis and oxidative stress. These findings lay the groundwork for the potential application of PDN@AGL in the treatment of II/R injury.


Subject(s)
Activating Transcription Factor 3 , Amino Acid Transport System y+ , Apigenin , Ferroptosis , Intestines , Nanoparticles , Reperfusion Injury , Humans , Apigenin/administration & dosage , Apigenin/pharmacology , Reactive Oxygen Species , Reperfusion Injury/drug therapy , Intestines/blood supply
4.
Int Immunopharmacol ; 127: 111444, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38157698

ABSTRACT

Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, their biological roles and function mechanisms in NAFLD remain largely unknown. In this study, we found that Gm28382 may be a potential pathogenic lncRNA of NAFLD and highly expressed in NAFLD through RNA-seq. Overexpression of Gm28382 significantly enhanced the lipid accumulation in AML12 cells, whereas Gm28382 silencing reduced lipogenesis both in palmitic acid (PA)-induced AML12 cells and high fat diet (HFD)-induced mice. Then, bioinformatics were employed to speculate the potential interacting genes of Gm28382, and found that Gm28382 may regulate ChREBP expression through binding with miR-326-3p. Fluorescence in situ hybridization (FISH), dual luciferase reporter assay, immunofluorescence RNA pull-down and RNA immunoprecipitation (RIP) assays were used to validate the binding and targeting relationship of these genes, and we confirmed that Gm28382 competitively binds to miR-326-3p to increase ChREBP expression as a ceRNA. Mechanistically, overexpression of Gm28382 upregulated the ChREBP-mediated lipid synthesis signaling pathway, but the function was sabotaged by miR-326-3p deletion or ChREBP overexpression. Furthermore, in PA-challenged AML12 cells or HFD-induced mice, silencing of Gm28382 reversed the aberrant ChREBP signaling pathway and lipid accumulation, whereas ChREBP overexpression or liver-specific silencing of miR-326-3p blocked this function of Gm28382. Collectively, these findings reveal a critical role of Gm28382 in the promotion of lipogenesis in NAFLD by regulating the ChREBP signaling pathway through interaction with miR-326-3p, which could serve as a potential therapeutic target for NAFLD treatment.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , In Situ Hybridization, Fluorescence , Signal Transduction/genetics , Transcription Factors/genetics , Lipids
5.
J Pharm Anal ; 13(10): 1153-1167, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38024855

ABSTRACT

It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease (PD). Dioscin, a bioactive steroidal saponin, shows various activities. However, its effects and mechanisms against PD are limited. In this study, dioscin dramatically alleviated neuroinflammation and oxidative stress, and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus, Streptococcus, Bacteroides and Lactobacillus genera, which further inhibited bile salt hydrolase (BSH) activity and blocked bile acid (BA) deconjugation. Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent. In addition, non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis. Moreover, targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid, tauroursodeoxycholic acid, taurodeoxycholic acid and ß-muricholic acid in feces and serum. In addition, ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice. Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5 (TGR5), glucagon-like peptide-1 receptor (GLP-1R), GLP-1, superoxide dismutase (SOD), and down-regulated NADPH oxidases 2 (NOX2) and nuclear factor-kappaB (NF-κB) levels. Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice, suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.

6.
J Pharm Anal ; 13(7): 760-775, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577387

ABSTRACT

Nine major cell populations among 46,716 cells were identified in mouse intestinal ischemia‒reperfusion (II/R) injury by single-cell RNA sequencing. For enterocyte cells, 11 subclusters were found, in which enterocyte cluster 1 (EC1), enterocyte cluster 3 (EC3), and enterocyte cluster 8 (EC8) were newly discovered cells in ischemia 45 min/reperfusion 720 min (I 45 min/R 720 min) group. EC1 and EC3 played roles in digestion and absorption, and EC8 played a role in cell junctions. For TA cells, after ischemia 45 min/reperfusion 90 min (I 45 min/R 90 min), many TA cells at the stage of proliferation were identified. For Paneth cells, Paneth cluster 3 was observed in the resting state of normal jejunum. After I 45 min/R 90 min, three new subsets were found, in which Paneth cluster 1 had good antigen presentation activity. The main functions of goblet cells were to synthesize and secrete mucus, and a novel subcluster (goblet cluster 5) with highly proliferative ability was discovered in I 45 min/R 90 min group. As a major part of immune system, the changes in T cells with important roles were clarified. Notably, enterocyte cells secreted Guca2b to interact with Gucy2c receptor on the membranes of stem cells, TA cells, Paneth cells, and goblet cells to elicit intercellular communication. One marker known as glutathione S-transferase mu 3 (GSTM3) affected intestinal mucosal barrier function by adjusting mitogen-activated protein kinases (MAPK) signaling during II/R injury. The data on the heterogeneity of intestinal cells, cellular communication and the mechanism of GSTM3 provide a cellular basis for treating II/R injury.

9.
Phytother Res ; 37(8): 3495-3507, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37125528

ABSTRACT

Effective amelioration of ischemia/reperfusion (I/R)-induced intestinal injury and revealing its mechanisms remain the challenges in both preclinic and clinic. Potential mechanisms of naringin in ameliorating I/R-induced intestinal injury remain unknown. Based on pre-experiments, I/R-injured rat intestine in vivo and hypoxia-reoxygenation (H/R)-injured IEC-6 cells in vitro were used to verify that naringin-alleviated I/R-induced intestinal injury was mediated via deactivating cGAS-STING signaling pathway. Naringin improved intestinal damage using hematoxylin and eosin staining and decreased alanine aminotransferase and aspartate aminotransferase contents in plasma. Naringin decreased inflammation characterized by reducing IL-6, IL-1ß, TNF-α, and IFN-ß contents in both plasma and IEC-6 cells. Naringin mitigated oxidative stress via recovering superoxide dismutase, glutathione, and malondialdehyde levels in the I/R-injured intestine. Naringin reduced the expression of apoptotic proteins, including Bax, caspase-3, and Bcl-2, and reduced terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling-positive cells both in vivo and in vitro, and decreased Hoechst 33342 signals in vitro. cGAS, STING, p-TBK1, p-IRF3, and NF-κB expressions were up-regulated both in vivo and in vitro respectively and the up-regulated indexes were reversed by naringin. Transfection of cGAS-siRNA and cGAS-cDNA significantly down-regulated and up-regulated cGAS-STING signaling-related protein expressions, respectively, and partially weakened naringin-induced amelioration on these indexes, suggesting that deactivation of cGAS-STING signaling is the crucial target for naringin-induced amelioration on I/R-injured intestine.


Subject(s)
Intestines , Reperfusion Injury , Rats , Animals , Signal Transduction , Inflammation/drug therapy , Nucleotidyltransferases/metabolism , Reperfusion Injury/drug therapy , Apoptosis
11.
Int J Biol Macromol ; 222(Pt B): 1983-1995, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36208807

ABSTRACT

Three water soluble polysaccharides named SUSP-1, SUSP-2 and SUSP-3 from Selaginella uncinata (Desv.) Spring were purified, which contained different contents of galactose, arabinose, mannose, glucose and xylose, and SUSP-3 had large amount of galacturonic acid. Structural identification showed that the backbone structure of SUSP-1 was composed of (1 â†’ 2)-α-D-Manp, (1 â†’ 4)-α-D-Manp and (1 â†’ 4)-ß-D-Xylp. The main chains of SUSP-2 were (1 â†’ 3)-α-D-Galp and (1 â†’ 4)-α-D-Glcp, and SUSP-3 had two fragments and the main chains were (1 â†’ 4)-α-D-GalpA and (1 â†’ 4)-ß-D-Xylp. Furthermore, their anti-inflammatory activities were evaluated. THP-1 monocytes were induced into macrophages by phorbol 12-myristate 13-acetat (PMA) and then stimulated by lipopolysaccharides (LPS). The data showed that compared with model groups, SUSP-1, SUSP-2 and SUSP-3 significantly inhibited ROS levels, promoted IL-10 expression, suppressed the mRNA levels of IL-6, TNF-α and IL-1ß, and effectively blocked LPS binding to CD14 receptor to reduce inflammation. This study provided new data for the development of natural polysaccharides from S. uncinata with anti-inflammatory activities.


Subject(s)
Selaginellaceae , Lipopolysaccharides , Water , Polysaccharides/pharmacology , Polysaccharides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
12.
Life Sci ; 307: 120863, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35940217

ABSTRACT

Multiple studies have confirmed the significance of microRNA (miR)-122a in disease regulation. However, its impact on ischaemia/reperfusion (I/R) injury is unknown. In this study, we propose that the promoting role of miR-122a exists in I/R injuries. Two models, including hypoxia/reoxygenation (H/R)-injured IEC-6 cells in vitro and ischemia/reperfusion (I/R)-injured C57BL/6 mice intestinal tissues in vivo, were used to verify our purpose. Applying dual-luciferase reporter assays and transfection tests, the regulatory impacts of miR-122a were examined by promoting pyroptosis on intestinal I/R injury via targeting epidermal growth factor receptor (EGFR)-NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) signaling pathway. Both H/R-injured IEC-6 cells and I/R-injured mice intestinal tissues had elevated miR-122a expression, which targeted EGFR directly. Increased miR-122a expression significantly inhibited EGFR activity, decreased EGFR mRNA and protein expression, increased NLRP3 mRNA and protein expression, and up-regulated caspase 1, N-GSDMD, ASC, IL-1ß, and IL-18 protein expression to promote pyroptosis. Furthermore, in IEC-6 cells, a miR-122a inhibitor and an EGFR-overexpression plasmid significantly reduced pyroptosis and alleviated intestinal I/R injury via activating the EGFR-NLRP3 signaling pathway, showing that miR-122a is very essential for regulating intestinal I/R injury. In brief, miR-122a promotes pyroptosis by inhibiting the EGFR-NLRP3 signaling pathway, which should be evaluated as a therapeutic target for intestinal I/R injury.


Subject(s)
MicroRNAs , Reperfusion Injury , Animals , Caspase 1/genetics , Caspase 1/metabolism , ErbB Receptors/metabolism , Interleukin-18/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , RNA, Messenger , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Signal Transduction
13.
Biomed Pharmacother ; 152: 113248, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691153

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aß) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl3 combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aß42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neurodegenerative Diseases , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Diosgenin/analogs & derivatives , Humans , Hydrogen Peroxide/pharmacology , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , NADPH Oxidase 4/metabolism , NF-kappa B/metabolism , Oxidative Stress
14.
Phytomedicine ; 103: 154222, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35675750

ABSTRACT

BACKGROUND: Dioscin, a steroidal saponin natural product, has various pharmacological activities, such as anti-inflammatory, antioxidant, lipid-lowering. However, little is known about its effects on myocardial infarction (MI) injury. Thus, the study aimed to investigate the protective effects and possible mechanisms of dioscin. METHODS: We evaluated protective effects of Dioscin on HL-1 cells after hypoxia based on MTT and ROS in vitro. In vivo, we ligated left anterior descending (LAD) of C57BL/6 mice to establish MI model and assess serum levels of LDH, CK-MB, cTnI, SOD, MDA and CAT treated by dioscin. In addition, myocardial damages were reflected by H&E, masson and ultrastructural examination and Electrocardiograph (ECG) was detected in MI mice. And the BMP4/NOX1 pathway was measured by western blotting, immunofluorescence assay and Real-time PCR. Furthermore, to investigate cardio-protective effects of dioscin via targeting BMP4, we transfected siBMP4 into HL-1 cells in vitro and injected BMP4 siRNA though tail veins in vivo. RESULTS: In vitro, dioscin significantly increased the viability of HL-1 cells and inhibited ROS level under hypoxia. In vivo, dioscin markedly reduced the elevation of ST segment and alleviated myocardial infarct area in mice. In terms of serology, dioscin evidently decreased LDH, CK-MB, cTnI, MDA levels, and increased SOD level. In addition, dioscin improved the pathological status of myocardial tissue and restrained the production of collagen fibers. Mechanism study proved that dioscin notablely regulated the levels of Nrf2, Keap1, HO-1, p-NF-κB, nNF-κB, TNF-α, IL-1ß and IL-6 by down-regulating the protein levels of BMP4 and NOX1 against oxidative stress and inflammation. Further investigation showed that siBMP4 transfection diminished hypoxia and MI-induced oxidative and inflammation injury. The transfection decreased LDH, CK-MB and cTnI levels, improved ischemia T-wave inversion and reduced striated muscle necrosis, nucleus dissolution, collagen fibrosis and mitochondrial swelling in mice. In addition, siBMP4 decreased ROS and MDA levels, increased SOD and CAT levels and down-regulated mRNA levels of TNF-α, IL-1ß and IL-6. Moreover, BMP4, NOX1 and nNF-κB protein levels were decreased and Nrf2 levels were increased by siBMP4. CONCLUSION: Our study confirmed that dioscin showed an outstanding anti-myocardial infarction effect via regulating BMP4/NOX1-mediated oxidative stress and inflammation, which has a promising application value and development prospect against MI injury in the future.


Subject(s)
Bone Morphogenetic Protein 4 , Diosgenin , Myocardial Infarction , NADPH Oxidase 1 , Oxidative Stress , Animals , Bone Morphogenetic Protein 4/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Hypoxia , Inflammation/drug therapy , Interleukin-6/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Mice, Inbred C57BL , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , NADPH Oxidase 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Acta Pharm Sin B ; 11(10): 3150-3164, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729306

ABSTRACT

The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy.

19.
Eur J Pharmacol ; 908: 174321, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34252440

ABSTRACT

Dioscin showed various pharmacological effects in our previous studies; however, the effects and mechanisms against lung ischemia/reperfusion injury (LI/RI) have not been reported. Hypoxia/reoxygenation (H/R) models were established using A549 and primary AEC-II cells, while LI/RI models were established in rats and mice. The effects of dioscin on oxidative stress, inflammation and apoptosis in vivo and in vitro were investigated. The mechanisms were investigated focus on dioscin regulating FXR/LKB1 signaling pathway. Dioscin improved cell viability and mitochondrial membrane potential, reduced reactive oxygen species level, and inhibited H/R-mediated cell apoptosis. It also significantly decreased the lung wet/dry weight ratio, ameliorated levels of oxidative stress indicators, and enhanced the mitochondrial membrane potential and inhibited cell apoptosis in vivo. The results of mechanism research showed that dioscin activated FXR/LKB1 signals by increasing the expression of p-LKB1 and p-AMPKα, promoting the nuclear translocation of Nrf2, up-regulating the levels of HO-1, NQO1 and GCLC, expressed against oxidative stress. Furthermore, dioscin reduced Cyt C released, decreased the expression levels of Caspase-9 and Caspase-3 during apoptosis. Dioscin suppressed inflammation by inhibiting NF-κB translocation, reducing the expression levels of NF-κB, HMGB1, COX-2, IL-1ß, IL-6 and TNF-α. The transfection of FXR or LKB1 siRNA further confirmed that the protective effect of dioscin against LI/RI was attributable to the regulation of FXR/LKB1 signaling pathway. Our research showed that dioscin exhibited potent activity against LI/RI, by adjusting the levels of FXR/LKB1-mediated oxidative stress, apoptosis, and inflammation, and should be considered as a new candidate for treating LI/RI.


Subject(s)
Diosgenin/analogs & derivatives , Reperfusion Injury , Animals , Apoptosis , Mice , Oxidative Stress , Rats
20.
Front Nutr ; 8: 635232, 2021.
Article in English | MEDLINE | ID: mdl-34124116

ABSTRACT

Vascular endothelial injury (VEI) is an early event of atherosclerosis, and reversing endothelial dysfunction has become a new trend in the prevention and treatment of cardiovascular diseases. Hengshun aromatic vinegar (HSAV), a traditional vinegar, has been reported to have many pharmacological activities, but its effect against VEI and the molecular mechanism are still unknown. In this study, effects of HSAV on VEI were evaluated in H2O2-induced human umbilical vein endothelial cells (HUVECs) and methionine-induced VEI in rats. Results showed that HSAV significantly increased cell viability, inhibited apoptosis, and reduced the generation of reactive oxygen species (ROS) in H2O2-induced HUVECs. Meanwhile, HSAV decreased serum homocysteine (Hcy), endothelin 1 (ET-1), and oxidized low-density lipoprotein (ox-LDL) levels, increased nitric oxide (NO) and endothelin nitric oxide synthase (eNOS) levels, ameliorated pathological changes in rats with VEI induced by methionine. In parallel, HSAV relieved oxidative stress by decreasing malondialdehyde (MDA) level and increasing superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels in rats with VEI. Mechanism studies indicated that HSAV markedly downregulated the expression of protein kinase C zeta (PKCζ), and consequently regulated sirtuin 1 (Sirt1)-mediated oxidative stress signal pathway, and protein inhibitor of activated STATy (PIASy)-mediated apoptosis pathway, leading to the alleviation of oxidative stress and inhibition of apoptosis. These regulative effects of HSAV were further validated by knockdown and overexpression of PKCζ in vitro. In conclusion, HSAV showed protective effect against VEI by inhibiting PKCζ and, thereby, ameliorating oxidative stress and inhibiting apoptosis. This study not only provides guidance for the consumption of vinegar in daily life but also promotes the development of diet supplement for disease prevention.

SELECTION OF CITATIONS
SEARCH DETAIL
...