Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407690

ABSTRACT

In hepatic fibrosis (HF), hepatic stellate cells (HSCs) form the extracellular matrix (ECM), and the pathological accumulation of ECM in the liver leads to inflammation. Our previous research found that miR-324-3p was down-regulated in culture-activated human HSCs. However, the precise effect of miR-324-3p on HF has not been elucidated. In this study, the HF mouse models were induced through directly injecting carbon tetrachloride (CCl4) into mice; the HF cell models were constructed using TGF-ß1-treated LX-2 cells. Next, real-time-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and immunohistochemistry (IHC) were applied to assess the expression levels of miR-324-3p, α-smooth muscle actin (α-SMA), Vimentin or SMAD4; hematoxylin and eosin (H&E), Masson' s trichrome and Sirius red staining to evaluate the liver injury; luciferase reporter assay to verify the targeting relationship between miR-324-3p and SMAD4; enzyme-linked immunosorbent assay (ELISA) to determine the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and cell counting kit-8 (CCK-8) and flow cytometry to evaluate the effects of miR-324-3p on cell proliferation and cycle/apoptosis, respectively. The experimental results showed a reduction in miR-324-3p level in CCl4-induced HF mice as well as transforming growth factor (TGF)-ß1-activated HSCs. Interestingly, the miR-324-3p level was rescued following the HF recovery process. In HF mice induced by CCl4, miR-324-3p overexpression inhibited liver tissue damage, decreased serum ALT and AST levels, and inhibited fibrosis-related biomarkers (α-SMA, Vimentin) expression, thereby inhibiting HF. Similarly, miR-324-3p overexpression up-regulated α-SMA and Vimentin levels in HF cells, while knockdown of miR-324-3p had the opposite effect. Besides, miR-324-3p played an antifibrotic role through inhibiting the proliferation of hepatocytes. Further experiments confirmed that miR-324-3p targeted and down-regulated SMAD4 expression. SMAD4 was highly expressed in HF cells, and silencing SMAD4 significantly decreased the α-SMA and Vimentin levels in HF cells. Collectively, the miR-324-3p may suppress the activation of HSCs and HF by targeting SMAD4. Therefore, miR-324-3p is identified as a potential and novel therapeutic target for HF.

2.
Int Immunopharmacol ; 110: 109006, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792270

ABSTRACT

Alcoholic liver disease (ALD) is a liver disease caused by long-term heavy drinking. Alcoholic liver injury is a part of alcoholic liver disease. A large number of studies have shown that alcohol metabolism and endotoxin / lipopolysaccharide (LPS) and cycles can cause massive activation of macrophages, leading alcoholic liver injury. Hesperetin is a dihydro-flavonoid extracted from the fruits of Citrus in Rutaceae. It has a variety of pharmacological activities, including antibacterial, anti-inflammatory, antioxidant and so on, but recent studies have shown that hesperetin derivatives have stronger anti-inflammatory effects than hesperetin. In order to improve the anti-inflammatory activity of hesperetin, our group used ethyl-bromoacetate to replace the hydroxyl group at the 7 position of hesperetin to obtain the hesperetin derivative 7-O-(2-(Propylamino)-2-oxoethyl) hesperetin (HD-4d). In this study, we found that HD-4d had hepatoprotective and anti-inflammatory effects on alcoholic liver injury in C57BL/6J mice, and it also had noticeable anti-inflammatory effects in EtOH and LPS-induced RAW264.7 cells. Besides, we found that HD-4d can reduce the expression of inflammatory factors by up-regulating NLRP12 in vivo and in vitro. We found that the expression of NLRP12 was significantly increased in EtOH and LPS-induced RAW264.7 cells compared with the control group. Moreover, the inhibitory effect of HD-4d on inflammation weakened considerably after silencing NLRP12 in RAW264.7 cells. However, when NLRP12 was overexpressed with plasmid pEX-3-NLRP12, the effect of HD-4d on alcohol and LPS induced inflammation was remarkably increased. In addition, further studies indicated that HD-4d inhibited the activation and phosphorylation of the p65 protein by up-regulating NLRP12. In conclusion, HD-4d activated NLRP12 to reduce liver injury and inflammatory response through the NF-кB pathway.


Subject(s)
Lipopolysaccharides , Liver Diseases, Alcoholic , Animals , Anti-Inflammatory Agents/pharmacology , Ethanol/therapeutic use , Hesperidin , Inflammation/chemically induced , Inflammation/drug therapy , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides/therapeutic use , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RAW 264.7 Cells
3.
Pharmacol Res ; 177: 106125, 2022 03.
Article in English | MEDLINE | ID: mdl-35149186

ABSTRACT

Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , NF-kappa B , Animals , Chemical and Drug Induced Liver Injury, Chronic/genetics , DNA Methylation , DNA Modification Methylases/genetics , Ethanol/toxicity , Inflammation/genetics , Mice , NF-kappa B/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
4.
J Cell Physiol ; 237(2): 1471-1485, 2022 02.
Article in English | MEDLINE | ID: mdl-34698390

ABSTRACT

Alcohol metabolism causes hepatocytes to release damage-associated molecular patterns (DAMPs). This includes mitochondrial DNA (mtDNA), which is generated and released from damaged hepatocytes and contributes to liver injury by producing proinflammatory cytokines. STING is a pattern recognition receptor of DAMPs known to control the induction of innate immunity in various pathological processes. However, the expression profile and functions of STING in the Gao binge ethanol model remain poorly understood. We demonstrated that STING is upregulated in the Gao binge ethanol model. STING functions as an mtDNA sensor in the Kupffer cells of the liver and induces STING-signaling pathway-dependent inflammation and further aggravates hepatocyte apoptosis in the Gao binge ethanol model. This study provides novel insights into predicting disease progression and developing targeted therapies for alcoholic liver injury.


Subject(s)
Ethanol , Hepatocytes , Animals , DNA, Mitochondrial/genetics , Hepatocytes/metabolism , Inflammation/pathology , Liver/metabolism , Mice , Mice, Inbred C57BL
5.
Clin Sci (Lond) ; 135(10): 1213-1232, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33871024

ABSTRACT

BACKGROUND AND AIMS: Alcoholic fatty liver (AFL) is an early form of alcoholic liver disease (ALD) that usually manifests as lipid synthesis abnormalities in hepatocytes. ß-arrestin2 (Arrb2) is involved in multiple biological processes. The present study aimed to explore the role of Arrb2 in the regulation of lipid metabolism in AFL and the underlying mechanism and identify potential targets for the treatment of AFL. METHODS: The expression of Arrb2 was detected in liver tissues obtained from AFL patients and Gao-binge AFL model mice. In addition, we specifically knocked down Arrb2 in AFL mouse liver in vivo and used Arrb2-siRNA or pEX3-Arrb2 to silence or overexpress Arrb2 in AML-12 cells in vitro to explore the functional role and underlying regulatory mechanism of Arrb2 in AFL. Finally, we investigated whether Arrb2 could cause changes in hepatic lipid metabolites, thereby leading to dysregulation of lipid metabolism based on liquid chromatography-mass spectrometry (LC-MS) analysis. RESULTS: Arrb2 was up-regulated in the livers of AFL patients and AFL mice. The in vivo and in vitro results confirmed that Arrb2 could induce lipid accumulation and metabolism disorders. Mechanistically, Arrb2 induced hepatic metabolism disorder via AMP-activated protein kinase (AMPK) pathway. The results of LC-MS analysis revealed that hepatic lipid metabolites with the most significant differences were primary bile acids. CONCLUSIONS: Arrb2 induces hepatic lipid metabolism disorders via AMPK pathway in AFL. On one hand, Arrb2 increases fatty acid synthesis. On the other hand, Arrb2 could increase the cholesterol synthesis, thereby leading to the up-regulation of primary bile acid levels.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fatty Liver, Alcoholic/metabolism , Liver Diseases, Alcoholic/etiology , beta-Arrestin 2/metabolism , Adolescent , Adult , Aged , Animals , Disease Models, Animal , Female , Hepatocytes/metabolism , Humans , Lipid Metabolism/physiology , Lipid Metabolism Disorders/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Male , Mice , Middle Aged
6.
Int Immunopharmacol ; 88: 106968, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33182058

ABSTRACT

Alcohol-induced liver injury is characterized by abnormal liver dysfunction and excessive inflammation response. Recent years a wealth of data have been yielded indicating that EtOH (ethyl alcohol)-induced macrophage activation along with liver inflammation plays a dominating role in the progression of alcohol-induced liver injury. Here we found high expression of NLRP12 (Nucleotide-binding oligomerization domain protein 12, which is generally considered to be a negative regulator of inflammatory response) in EtOH-fed mouse liver tissue, primary Kupffer cells and EtOH-induced RAW264.7 cells. Additionally, overexpression of NLRP12 following Ad (adenovirus)-NLRP12-EGFP contributed to the attenuation of steatosis and inflammation in EtOH-fed mice model and EtOH-primed RAW264.7 cells. In parallel, Knockdown of NLRP12 aggravated the inflammatory response in RAW264.7 cells triggered by EtOH. Meanwhile, after administration of overexpression or inhibition of NLRP12 expression in vitro, the expression of phosphorylated protein of NF-kB signaling pathway was significantly affected. After increasing or decreasing the expression of NLRP12 in RAW264.7 cells, AML-12 cells were cultured with the supernatant of RAW264.7 cells stimulated by EtOH, and the percent of apoptosis ratio of AML-12 cells was remarkably altered. The study suggested that reduced inflammatory response induced by NLRP12-mediated inhibition of NF-kB pathway participated in the decrease of hepatocyte apoptosis in alcohol-induced liver injury. Collectively, these findings suggested the significance of NLRP12-mediated macrophage activation in alcohol-induced liver injury.


Subject(s)
Apoptosis , Hepatocytes/immunology , Intracellular Signaling Peptides and Proteins/immunology , Liver Diseases, Alcoholic/immunology , Macrophage Activation , NF-kappa B/immunology , Animals , Cell Line , Cytokines/immunology , Ethanol , Liver/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Signal Transduction
7.
Theranostics ; 10(11): 4851-4870, 2020.
Article in English | MEDLINE | ID: mdl-32308754

ABSTRACT

Rationale: Circular RNAs (circRNAs) are a new form of noncoding RNAs that play crucial roles in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we show a novel circFBXW4 mediates HF via targeting the miR-18b-3p/FBXW7 axis. Methods: We investigated the expression profile of circRNAs, microRNAs and mRNAs in hepatic stellate cells (HSCs) from HF progression and regression mice by circRNAs-seq and microarray analysis. We found a significantly dysregulated circFBXW4 in HF. Loss-of-function and gain-of-function analysis of circFBXW4 were performed to assess the role of circFBXW4 in HF. Furthermore, we confirmed that circFBXW4 directly binds to miR-18b-3p by luciferase reporter assay, RNA pull down and fluorescence in situ hybridization analysis. Results: We found that circFBXW4 downregulated in liver fibrogenesis. Enforcing the expression of circFBXW4 inhibited HSCs activation, proliferation and induced apoptosis, attenuated mouse liver fibrogenesis injury and showed anti-inflammation effect. Mechanistically, circFBXW4 directly targeted to miR-18b-3p to regulate the expression of FBXW7 in HF. Conclusions: circFBXW4 may act as a suppressor of HSCs activation and HF through the circFBXW4/miR-18b-3p/FBXW7 axis. Our findings identify that circFBXW4 serves as a potential biomarker for HF therapy.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/metabolism , Liver Cirrhosis/prevention & control , MicroRNAs/genetics , RNA, Circular/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Down-Regulation , F-Box-WD Repeat-Containing Protein 7/genetics , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction
8.
Toxicol Lett ; 319: 11-21, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31711802

ABSTRACT

Alcoholic liver injury (ALI) is a part of alcohol-related liver diseases. These diseases include steatohepatitis, alcoholic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Accumulating data indicates that alcohol metabolism and circulating endotoxin/lipopolysaccharide (LPS) contribute to macrophage activation, which leads to the development of ALI. Protein tyrosine phosphatase 1B (PTP1B) has been shown to be involved in many tissue inflammations as well as liver fibrosis; however, the role of PTP1B in ALI is still unclear. In this study, PTP1B expression was elevated in liver tissues and primary macrophages isolated from EtOH-fed mice. Moreover, PTP1B expression was elevated in RAW264.7 cells stimulated with alcohol and LPS. Additional studies showed that silencing of PTP1B reduced the inflammatory response and expression of inflammatory cytokines such as IL-1ß, IL-6 and TNF-α, while overexpression of PTP1B induced inflammation in RAW264.7 cells. In addition, we found that NF-κB pathway was activated in RAW264.7 cells stimulated with alcohol and LPS, and PTP1B silencing or overexpression could regulate NF-κB signaling. In conclusion, this study revealed the function of PTP1B in ALI via its regulation of the NF-κB signaling pathway and may provide theoretical support for further research on ALI.


Subject(s)
Liver Diseases, Alcoholic/genetics , Macrophage Activation , NF-kappa B/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Signal Transduction/genetics , Animals , Central Nervous System Depressants/pharmacology , Cytokines/biosynthesis , Ethanol/pharmacology , Lipopolysaccharides/pharmacology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 1/biosynthesis , RAW 264.7 Cells , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...