Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Front Nutr ; 11: 1370975, 2024.
Article in English | MEDLINE | ID: mdl-38606017

ABSTRACT

With the development of animal husbandry, the shortage of animal feedstuffs has become serious. Dietary fiber plays a crucial role in regulating animal health and production performance. The aim of this study was to investigate the effects of three kinds of corn straw-saccharification fibers (CSSF) such as high-fiber and low-saccharification (HFLS), medium-fiber and medium-saccharification (MFMS), low-fiber and high-saccharification (LFHS) CSSF on the reproductive performance of sows. Thirty-two primiparous Yorkshire sows were randomly assigned to 4 groups, 8 sows for each group. Group A was the basal diet as the control group; groups B - D were added with 6% HFLSCSSF, 6% MFMSCSSF and 6% LFHSCSSF to replace some parts of corn meal and wheat bran in the basal diet, respectively. The experimental period was from day 85 of gestation to the end of lactation (day 25 post-farrowing). The results showed that 6% LFHSCSSF addition significantly increased number of total born (alive) piglets, litter weight at birth (p < 0.05), whereas three kinds of CSSF significantly decreased backfat thickness of sows during gestation (p < 0.001), compared with the control group. Furthermore, CSSF improved the digestibility of crude protein, ether extract and fiber for sows. In addition, the levels of total cholesterol, total triglycerides, and high-density lipoprotein cholesterol in serum of sows were decreased by different kinds of CSSF. Further analysis revealed that CSSF regulated lipid metabolism through adjusting the serum metabolites such as 4-pyridoxic acid, phosphatidyl cholines and L-tyrosine. In summary, CSSF addition to the diets of sows during late gestation and lactation regulated lipid metabolism and improved reproductive performance of sows. This study provided a theoretical basis for the application of corn straw in sow diets.

2.
AMB Express ; 13(1): 52, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37249811

ABSTRACT

Deoxynivalenol (DON) is one of the most prevalent mycotoxin contaminants, which posing a serious health threat to animals and humans. Previous studies have found that individually supplemented probiotic or glycyrrhinic acid (GA) could degrade DON and alleviate DON-induced cytotoxicity. The present study investigated the effect of combining GA with Saccharomyces cerevisiae (S. cerevisiae) and Enterococcus faecalis (E. faecalis) using orthogonal design on alleviating IPEC-J2 cell damage induced by DON. The results showed that the optimal counts of S. cerevisiae and E. faecalis significantly promoted cell viability. The optimal combination for increasing cell viability was 400 µg/mL GA, 1 × 106 CFU/mL S. cerevisiae and 1 × 106 CFU/mL E. faecalis to make GAP, which not only significantly alleviated the DON toxicity but also achieved the highest degradation rate of DON (34.7%). Moreover, DON exposure significantly increased IL-8, Caspase3 and NF-κB contents, and upregulated the mRNA expressions of Bax, Caspase 3, NF-κB and the protein expressions of Bax, TNF-α and COX-2. However, GAP addition significantly reduced aforementioned genes and proteins. Furthermore, GAP addition significantly increased the mRNA expressions of Claudin-1, Occludin, GLUT2 and ASCT2, and the protein expressions of ZO-1, Claudin-1 and PePT1. It was inferred that the combination of GA, S. cerevisiae, and E. faecalis had the synergistic effect on enhancing cell viability and DON degradation, which could protect cells from DON-induced damage by reducing DON cytotoxicity, alleviating cell apoptosis and inflammation via inhibiting NF-κB signaling pathway, improving intestinal barrier function, and regulating nutrient absorption and transport. These findings suggest that GAP may have potential as a dietary supplement for livestock or humans exposed to DON-contaminated food or feed.

3.
Ecotoxicol Environ Saf ; 256: 114901, 2023 May.
Article in English | MEDLINE | ID: mdl-37054475

ABSTRACT

Deoxynivalenol (DON) can affect health and growth performance of pigs, resulting in significant economic losses in swine production. The aim of this study was to investigate the effect of glycyrrhizic acid combined with compound probiotics, i.e. Enterococcus faecalis plus Saccharomyces cerevisiae (GAP) on improving growth performance, intestinal health and its fecal microbiota composition change of piglets challenged with DON. A total of 160 42-day-old weaned piglets (Landrace × Large White) were used and the experimental period was 28 d. The results showed that supplementing GAP in the diet significantly improved the growth performance of piglets challenged with DON and alleviate DON-induced intestinal damage by reducing ALT, AST and LDH concentrations in serum, increasing the morphological parameters of jejunum, and decreasing DON residues in serum, liver and feces. Moreover, GAP could significantly decrease the expressions of inflammation and apoptosis genes and proteins (IL-8, IL-10, TNF-α, COX-2, Bax, Bcl-2 and Caspase 3), and increase the expressions of tight-junction proteins and nutrient transport factor genes and proteins (ZO-1, Occludin, Claudin-1, ASCT2 and PePT1). In addition, it was also found that GAP supplementation could significantly increase the diversity of gut microbiota, maintain microbial flora balance and promote piglet growth by significantly increasing the abundance of beneficial bacterium such as Lactobacillus and reducing the abundance of harmful bacterium such as Clostridium_sensu_stricto_1. In conclusion, GAP addition to piglet diets contaminated with DON could significantly promote the health and growth performance of piglets though alleviating DON-induced hazards. This study provided a theoretical basis for the application of GAP to alleviate DON toxicity for animals.


Subject(s)
Probiotics , Trichothecenes , Swine , Animals , Glycyrrhizic Acid/pharmacology , Intestines
4.
Poult Sci ; 102(1): 102302, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36436373

ABSTRACT

The purpose of this experiment was to determine the effectiveness of compound feed additive (CFA) to replace antibiotics for broiler production. A total of 350 one-day-old Arbor Acres broilers were randomly divided into 7 groups, 5 replications in each group and 10 broilers in each replication. Group A was the control; group B was supplemented with 75 mg/kg chlortetracycline; groups C, D, and E were supplemented with 0.03, 0.06, and 0.09% CFA including glucose oxidase, curcumin, and Lactobacillus acidophilus; group F was supplemented with 0.03% CFA plus 0.50% glucose; group G was supplemented with 0.50% glucose. The feeding period was divided into the early (1-21 d) and later stages (22-42 d). The results showed that average daily gain (ADG) and feed conversion rate (F/G) in group F in later stage were significantly better than those in the control and antibiotic groups; the diarrhea rates in the groups containing CFA in both stages was significantly lower than that in the control and antibiotic groups, indicating that CFA was better than antibiotics to improve growth and decrease diarrhea rate for broilers. Pathogenic E. coli challenge significantly increased diarrhea rates and decreased ADG for broilers; however, CFA addition could alleviate the above negative responses by increasing gut Lactobacillus abundance and decreasing Shigella abundance. It can be concluded that CFA can replace antibiotics to regulate intestinal microbiota, reduce diarrhea rate, and improve broiler growth.


Subject(s)
Diet , Gastrointestinal Microbiome , Animals , Diet/veterinary , Chickens/physiology , Escherichia coli , Dietary Supplements/analysis , Anti-Bacterial Agents/pharmacology , Diarrhea/veterinary , Animal Feed/analysis
5.
Poult Sci ; 102(3): 102434, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36586389

ABSTRACT

The aim of this study was to evaluate the effects of compound mycotoxin detoxifier (CMD) on alleviating the toxic effect of aflatoxin B1 (AFB1) for broiler growth performance. One-kilogram CMD consists of 667 g aflatoxin B1-degrading enzyme (ADE, 1,467 U/g), 200 g montmorillonite and 133 g compound probiotics (CP). The feeding experiment was divided into 2 stages (1-21 d and 22-42 d). In the early stage, a total of 300 one-day-old Ross broilers were randomly divided into 6 groups, 5 replications for each group, 10 broilers (half male and half female) in each replication. In the later feeding stage, about 240 twenty-two-day-old Ross broilers were randomly divided into 6 groups, 8 replications for each group, 5 broilers in each replication. Group A: basal diet; group B: basal diet with 40 µg/kg AFB1; group C: basal diet with 1 g/kg CMD; groups D, E, and F: basal diet with 40 µg/kg AFB1 plus 0.5, 1.0 and 1.5 g/kg CMD, respectively. The results indicated that AFB1 significantly decreased average daily gain (ADG), protein metabolic rate, organ index of thymus, bursa of Fabricius (BF), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase activities in serum, and increased AFB1 residues in serum and liver (P < 0.05). Hematoxylin-Eosin (HE) staining analysis of jejunum, liver and kidney showed that AFB1 caused the main pathological changes with different degrees of inflammatory cell infiltration. However, CMD additions could alleviate the negative effects of AFB1 on the above parameters. The gut microbiota analysis indicated that AFB1 could significantly increase the abundances of Staphylococcus-xylosu, Esherichia-coli-g-Escherichia-Shigella, and decrease Lactobacillus-aviarius abundance (P < 0.05), but which were adjusted to almost the same levels as the control group by CMD addition. The correlative analysis showed that Lactobacillus-aviarius abundance was positively correlated with ADG, SOD and BF (P < 0.05), whereas Staphylococcus-xylosus abundance was positively correlated with AFB1 residues in serum and liver (P < 0.05). In conclusion, CMD could keep gut microbiota stable, alleviate histological lesions, increase growth performance, and reduce mycotoxin toxicity. The optimal CMD addition should be 1 g/kg in AFB1-contaminated broilers diet.


Subject(s)
Aflatoxins , Gastrointestinal Microbiome , Mycotoxins , Female , Animals , Male , Aflatoxins/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Mycotoxins/toxicity , Mycotoxins/metabolism , Chickens , Diet/veterinary , Liver , Superoxide Dismutase/metabolism , Animal Feed/analysis
6.
Toxins (Basel) ; 14(12)2022 12 04.
Article in English | MEDLINE | ID: mdl-36548753

ABSTRACT

Deoxynivalenol (DON) is a widespread mycotoxin that affects the intestinal health of animals and humans. In the present study, we performed RNA-sequencing and 16S rRNA sequencing in piglets after DON and glycyrrhizic acid and compound probiotics (GAP) supplementation to determine the changes in intestinal transcriptome and microbiota. Transcriptome results indicated that DON exposure altered intestinal gene expression involved in nutrient transport and metabolism. Genes related to lipid metabolism, such as PLIN1, PLIN4, ADIPOQ, and FABP4 in the intestine, were significantly decreased by DON exposure, while their expressions were significantly increased after GAP supplementation. KEGG enrichment analysis showed that GAP supplementation promoted intestinal digestion and absorption of proteins, fats, vitamins, and other nutrients. Results of gut microbiota composition showed that GAP supplementation significantly improved the diversity of gut microbiota. DON exposure significantly increased Proteobacteria, Actinobacteria, and Bacillus abundances and decreased Firmicutes, Lactobacillus, and Streptococcus abundances; however, dietary supplementation with GAP observably recovered their abundances to normal. In addition, predictive functions by PICRUSt analysis showed that DON exposure decreased lipid metabolism, whereas GAP supplementation increased immune system. This result demonstrated that dietary exposure to DON altered the intestinal gene expressions related to nutrient metabolism and induced disturbances of intestinal microbiota, while supplementing GAP to DON-contaminated diets could improve intestinal health for piglets.


Subject(s)
Microbiota , Probiotics , Humans , Animals , Swine , Glycyrrhizic Acid/pharmacology , RNA, Ribosomal, 16S/genetics , Transcriptome , Intestines , Probiotics/pharmacology , Dietary Supplements
7.
Toxins (Basel) ; 14(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36287934

ABSTRACT

In order to alleviate the toxic effects of aflatoxins B1 (AFB1) on inflammatory responses in the intestine, liver, and kidney of broilers, the aflatoxin B1-degrading enzyme, montmorillonite, and compound probiotics were selected and combined to make a triple-action compound mycotoxin detoxifier (CMD). The feeding experiment was divided into two stages. In the early feeding stage (1−21 day), a total of 200 one-day-old Ross broilers were randomly divided into four groups; in the later feeding stage (22−42 day), 160 broilers aged at 22 days were assigned to four groups: Group A: basal diet (4.31 µg/kg AFB1); Group B: basal diet with 40 µg/kg AFB1; Group C: Group A plus 1.5 g/kg CMD; Group D: Group B plus 1.5 g/kg CMD. After the feeding experiment, the intestine, liver, and kidney tissues of the broilers were selected to investigate the molecular mechanism for CMD to alleviate the tissue damages. Analyses of mRNA abundances and western blotting (WB) of inflammatory factors, as well as immunohistochemical (IHC) staining of intestine, liver, and kidney tissues showed that AFB1 aggravated the inflammatory responses through NF-κB and TN-α signaling pathways via TLR pattern receptors, while the addition of CMD significantly inhibited the inflammatory responses. Phylogenetic investigation showed that AFB1 significantly increased interleukin-1 receptor-associated kinase (IRAK-1) and mitogen-activated protein kinase (MAPK) activities (p < 0.05), which were restored to normal levels by CMD addition, indicating that CMD could alleviate cell inflammatory damages induced by AFB1.


Subject(s)
Aflatoxin B1 , Mycotoxins , Animals , Aflatoxin B1/analysis , Chickens , Mycotoxins/analysis , Bentonite/pharmacology , NF-kappa B , Interleukin-1 Receptor-Associated Kinases/pharmacology , Phylogeny , Liver , Kidney , Intestines/chemistry , RNA, Messenger , Mitogen-Activated Protein Kinases , Animal Feed/analysis
8.
Toxins (Basel) ; 14(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36287939

ABSTRACT

Aflatoxins B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEA) are the three most prevalent mycotoxins, whose contamination of food and feed is a severe worldwide problem. In order to alleviate the toxic effects of multi-mycotoxins (AFB1 + DON + ZEA, ADZ) on inflammation and apoptosis in swine jejunal epithelial cells (IPEC-J2), three species of probiotics (Bacillus subtilis, Saccharomyces cerevisiae and Pseudomonas lactis at 1 × 105 CFU/mL, respectively) were mixed together to make compound probiotics (CP), which were further combined with 400 µg/mL of glycyrrhinic acid (GA) to make bioactive materials (CGA). The experiment was divided into four groups, i.e., the control, ADZ, CGA and ADZ + CGA groups. The results showed that ADZ decreased cell viability and induced cytotoxicity, while CGA addition could alleviate ADZ-induced cytotoxicity. Moreover, the mRNA expressions of IL-8, TNF-α, NF-Κb, Bcl-2, Caspase-3, ZO-1, Occludin, Claudin-1 and ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly upregulated in ADZ group; while the mRNA abundances of IL-8, TNF-α, NF-Κb, Caspase-3, ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly downregulated in the ADZ + CGA group. In addition, the protein expressions of COX-2, ZO-1, and ASCT2 were significantly downregulated in the ADZ group, compared with the control group; whereas CGA co-incubation with ADZ could increase these protein expressions to recover to normal levels. This study indicated that CGA could alleviate cytotoxicity, apoptosis and inflammation in ADZ-induced IPEC-J2 cells and protect intestinal cell integrity from ADZ damages.


Subject(s)
Mycotoxins , Probiotics , Trichothecenes , Zearalenone , Humans , Mycotoxins/toxicity , Zearalenone/toxicity , Caspase 3/metabolism , Trichothecenes/metabolism , Occludin/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-8/metabolism , Claudin-1/metabolism , NF-kappa B/metabolism , Cyclooxygenase 2/metabolism , Cell Line , Probiotics/pharmacology , Epithelial Cells , Aflatoxin B1/toxicity , Inflammation/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism
9.
Front Vet Sci ; 9: 902052, 2022.
Article in English | MEDLINE | ID: mdl-35795786

ABSTRACT

The emergence of pseudorabies virus (PRV) variants brings serious harm to the swine industry, and its effective treatments are limited at present. As one of the probiotics, the Lactobacillus species have beneficial characteristics of regulating the balance of intestinal flora, inhibiting the growth of pathogenic bacteria and viruses' proliferation, and improving self-immunity. In this study, Lactobacillus plantarum HN-11 and Lactobacillus casei HN-12 were selected and identified through morphology observation, Gram stain microscopy, 16S rRNA sequencing analysis, and specific amplification of the recA gene and pheS gene. All tested isolates exhibited rapid adaptation to the different conditions, excellent acid, and bile tolerance, and sensitivity to Salmonella, Staphylococcus aureus, and Escherichia coli. The antibiotic susceptibility assay displayed the isolates sensitive to most antibiotics and resistant to Lincomycin and Norfloxacin. Moreover, the supernatants of HN-11 and HN-12 inhibited PRV proliferation in ST cells. The results of animal experiments showed that supplementing the challenged mice with the supernatants of Lactobacillus isolates in advance delayed the course of the disease. PRV was detected in the heart, liver, spleen, lung, kidney, and brain tissues of dead mice in the test groups, and its copies in the lungs were significantly decreased compared with the control mice (P < 0.05). These findings proved the advantages of L. plantarum and L. casei as potential probiotic cultures, which could provide a basis for its application in microecological preparations and functional formulations.

10.
Article in English | MEDLINE | ID: mdl-34372754

ABSTRACT

The aim of this study was to evaluate the detoxification of aflatoxin B1 (AFB1) in vitro and in broiler chickens using a triple-action compound mycotoxin detoxifier (CMD). Response surface methodology (RSM) was used to evaluate AFB1 detoxification in artificial gastrointestinal fluid (AGIF) in vitro. The AFB1-degradation rate was 41.5% (P < .05) when using a compound probiotic (CP) in which the visible counts of Bacillus subtilis, Lactobacillus casein, Enterococcus faecalis and Candida utilis were 1.0 × 105, 1.0 × 105, 1.0 × 107 and 1.0 × 105 CFU/mL, respectively. When CP was combined with 0.1% AFB1-degrading enzyme to give CPADE, the AFB1-degradation rate was increased to 55.28% (P < .05). The AFB1-removal rate was further increased to above 90% when CPADE was combined with 0.03% montmorillonite to make CMD. In vivo, a total of 150 one-day-old Ross broilers were allotted to 3 groups, 5 replications for each group, 10 broilers in each replication. Group A: basal diet, Group B: basal diet with 40 µg/kg AFB1, Group C: basal diet with 40 µg/kg AFB1 plus CMD. The feeding experiment period was 21 d. The results showed that broiler growth was increased, and AFB1 residues in serum, excreta and liver were decreased by CMD addition in broiler diet (P < .05). In conclusion, CMD was able to remove AFB1 efficiently in vitro and to increase broiler production performance and reduce AFB1 residues in the chickens.


Subject(s)
Aflatoxin B1/analysis , Animal Feed/analysis , Food Contamination/analysis , Aflatoxin B1/metabolism , Animals , Chickens
11.
AMB Express ; 11(1): 35, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33646441

ABSTRACT

Aflatoxin B1 (AFB1) is one of the most dangerous mycotoxins for humans and animals. This study aimed to investigate the effects of compound probiotics (CP), CP supernatant (CPS), AFB1-degradation enzyme (ADE) on chicken embryo primary intestinal epithelium, liver and kidney cell viabilities, and to determine the functions of CP + ADE (CPADE) or CPS + ADE (CPSADE) for alleviating cytotoxicity induced by AFB1. The results showed that AFB1 decreased cell viabilities in dose-dependent and time-dependent manners. The optimal AFB1 concentrations and reactive time for establishing cell damage models were 200 µg/L AFB1 and 12 h for intestinal epithelium cells, 40 µg/L and 12 h for liver and kidney cells. Cell viabilities reached 231.58% (p < 0.05) for intestinal epithelium cells with CP addition, 105.29% and 115.84% (p < 0.05) for kidney and liver cells with CPS additions. The further results showed that intestinal epithelium, liver and kidney cell viabilities were significantly decreased to 87.12%, 88.7% and 84.19% (p < 0.05) when the cells were exposed to AFB1; however, they were increased to 93.49% by CPADE addition, 102.33% and 94.71% by CPSADE additions (p < 0.05). The relative mRNA abundances of IL-6, IL-8, TNF-α, iNOS, NF-κB, NOD1 (except liver cell) and TLR2 in three kinds of primary cells were significantly down-regulated by CPADE or CPSADE addition, compared with single AFB1 group (p < 0.05), indicating that CPADE or CPSADE addition could alleviate cell cytotoxicity and inflammation induced by AFB1 exposure through suppressing the activations of NF-κB, iNOS, NOD1 and TLR2 pathways.

12.
Oxid Med Cell Longev ; 2020: 5974157, 2020.
Article in English | MEDLINE | ID: mdl-33163144

ABSTRACT

Deoxynivalenol (DON) is the most common mycotoxin that frequently contaminates human food and animal feed, resulting in intestinal diseases and systemic immunosuppression. Glycyrrhinic acid (GA) exhibits various pharmacological activities. To investigate the protective mechanism of GA for DON-induced inflammation and apoptosis in IPEC-J2 cells, RNA-seq analysis was used in the current study. The IPEC-J2 cells were treated with the control group (CON), 0.5 µg/mL DON, 400 µg/mL GA, and 400 µg/mL GA+0.5 µg/mL DON (GAD) for 6 h. Results showed that 0.5 µg/mL DON exposure for 6 h could induce oxidative stress, inflammation, and apoptosis in IPEC-J2 cells. GA addition could specifically promote the proliferation of DON-induced IPEC-J2 cells in a dose- and time-dependent manner. In addition, GA addition significantly increased Bcl-2 gene expression (P < 0.05) and superoxide dismutase and catalase activities (P < 0.01) and decreased lactate dehydrogenase release, the contents of malonaldehyde, IL-8, and NF-κB (P < 0.05), the relative mRNA abundances of IL-6, IL-8, TNF-α, COX-2, NF-κB, Bax, and caspase 3 (P < 0.01), and the protein expressions of Bax and TNF-α. Moreover, a total of 1576, 289, 1398, and 154 differentially expressed genes were identified in CON vs. DON, CON vs. GA, CON vs. GAD, and DON vs. GAD, respectively. Transcriptome analysis revealed that MAPK, TNF, and NF-κB signaling pathways and some chemokines played significant roles in the regulation of inflammation and apoptosis induced by DON. GA may alleviate DON cytotoxicity via the TNF signaling pathway by downregulating IL-15, CCL5, and other gene expressions. These results indicated that GA could alleviate DON-induced oxidative stress, inflammation, and apoptosis via the TNF signaling pathway in IPEC-J2 cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Gene Expression Profiling , Gene Expression Regulation/drug effects , Trichothecenes/adverse effects , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Trichothecenes/pharmacology
13.
Ecotoxicol Environ Saf ; 205: 111376, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32961488

ABSTRACT

Deoxynivalenol (DON) is extensively detected in many kinds of foods and feeds to harm human and animal health. This research aims to investigate the effect of chlorogenic acid (CGA) on alleviating inflammation and apoptosis of swine jejunal epithelial cells (IPEC-J2) triggered by DON. The results demonstrated that cell viability was decreased when DON concentrations increased or incubation time expanded. The pretreatment with CGA (40 µg/mL) for 1 h increased cell viability, decreased lactate dehydrogenase (LDH) release and apoptosis in cells triggered by DON at 0.5 µg/mL for 6 h, compared with the DON alone-treated cells. Moreover, the mRNA abundances of IL-8, IL-6, TNF-α, COX-2, caspase-3, Bax and ASCT2 genes, and protein expressions of COX-2, Bax and ASCT2 were significantly down-regulated; while the mRNA abundances of ZO-1, claudin-1, occludin, PePT1 and GLUT2 genes, and protein expressions of ZO-1, claudin-1 and PePT1 were significantly up-regulated in the CGA + DON group, compared with the DON alone group. This study indicated that CGA pretreatment alleviated cytotoxicity, inflammation and apoptosis in DON-triggered IPEC-J2 cells, and protected intestinal cell integrity from DON damages.


Subject(s)
Chlorogenic Acid/pharmacology , Protective Agents/pharmacology , Trichothecenes/toxicity , Animals , Apoptosis/drug effects , Caspase 3 , Cell Count , Cell Line , Cell Survival/drug effects , Chlorogenic Acid/metabolism , Epithelial Cells/drug effects , Inflammation/metabolism , Intestines/drug effects , Occludin/genetics , Swine
14.
Oxid Med Cell Longev ; 2020: 3183104, 2020.
Article in English | MEDLINE | ID: mdl-32318237

ABSTRACT

Active peptides have good effectiveness in controlling or preventing many diseases. Compound active peptides (CAP) obtained from animal, plant, and sea food proteins were used in this study to explore their effects on antioxidation, anti-inflammation, and antihyperglycemia in vitro and in vivo. The results demonstrated that 10 µg/mL CAP could increase cell viability (P < 0.05) and decrease reactive oxygen species (ROS) levels and cell apoptosis (P < 0.05) when WRL68 cells were induced by H2O2 for 6 h. Moreover, incubation with 20 µg/mL CAP for 6 h significantly increased cell viability and Bcl-2 expression level (P < 0.05) and decreased expression levels of IL-6, IL-8, TNF-α, Bax, and Caspase 3 and the ratio of Bax/Bcl-2 (P < 0.05) when swine jejunal epithelial cells (IPEC-J2) were induced by deoxynivalenol (DON). In addition, adding CAP individually or combined with Liuweidihuang pills (LDP, Chinese medicine) and low-dose glibenclamide could lower blood glucose levels in alloxan-induced hyperglycemic model mice. These results suggested that CAP was probably a beneficial ingredient for alleviating H2O2-induced oxidative stress and DON-induced cell inflammation and apoptosis and preventing hyperglycemia.


Subject(s)
Epithelial Cells/metabolism , Hyperglycemia/drug therapy , Intestines/drug effects , Liver/metabolism , Peptides/therapeutic use , Amino Acid Sequence , Animals , Cell Line , Humans , Male , Mice , Peptides/pharmacology
15.
J Appl Toxicol ; 40(10): 1362-1372, 2020 10.
Article in English | MEDLINE | ID: mdl-32324309

ABSTRACT

Deoxynivalenol (DON) is a common mycotoxin, which often induces oxidative stress and cytotoxicity in humans and animals. Astilbin (AST), as a natural antioxidant, exhibits multiple pharmacological functions. The aim of this study was to investigate the effects of AST on alleviating DON-induced cytotoxicity in intestinal porcine epithelial cells (IPEC-J2). The results demonstrated that 0.5 µg/mL DON stimulation for 6 hours induced oxidative stress, inflammation and apoptosis in IPEC-J2 cells. AST enhanced the cell viability in a dose- and time-dependent manner. The addition of 20 µg/mL AST significantly increased cell viability, superoxide dismutase and catalase activities, Bcl-2 gene expression and the Bcl-2/Bax ratio (P < .05), and decreased lactate dehydrogenase release, malondialdehyde content and the relative expressions of genes associated with inflammation and apoptosis such as interleukin-6 and -8, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-kappaB, Bax and caspase-3 (P < .05). Simultaneously, zonula occludens-1, claudin-1 and PepT1 gene expressions were upregulated and occludin, ASCT2 and GLUT2 gene expressions were downregulated by the addition of AST, compared with the DON group (P < .05). These results indicated that 20 µg/mL AST could ameliorate oxidative stress, inflammation and apoptosis by enhancing antioxidant enzyme activities and intestinal barrier function, and reducing the expressions of inflammation and apoptosis genes, as well as improve the barrier function and nutrient transport and absorption in DON-induced IPEC-J2 cells.


Subject(s)
Antioxidants/metabolism , Apoptosis/drug effects , Epithelial Cells/drug effects , Flavonols/metabolism , Intestines/drug effects , Mycotoxins/toxicity , Oxidative Stress/drug effects , Trichothecenes/toxicity , Animals , Cells, Cultured/drug effects , Humans , Models, Animal , Swine
16.
Animals (Basel) ; 10(3)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204369

ABSTRACT

This study was conducted to investigate the effects of dietary supplementation with compound probiotics and berberine (CPB) on growth performance, nutrient digestibility and fecal microflora in weaned piglets. A total of 200 piglets 35 days old were randomly allocated to 5 groups, 4 replications in each group, and 10 piglets in each replication. Group A was the basal diet; group B was supplemented with antibiotics and zinc oxide; groups C, D and E were supplemented with 0.06%, 0.12% and 0.18% CPB, respectively. The experimental period was 42 d. The results indicated that there were no significant differences in average daily feed intake (ADFI), average daily gain (ADG) and feed conversion rate (FCR) among five groups (p > 0.05). However, mortality, diarrhea and rejection rates in the control group were higher than that in other groups. CPB could increase protein digestibility and serum IgG content (p < 0.05), while it could decrease serum urea nitrogen content and alkaline phosphatase activity (p < 0.05). Analysis of fecal microbiota showed that the relative abundances of Bacteroides and Firmicutes were increased, while the relative abundances of opportunistic pathogens such as Spirochaetae and Protebactreria were dramatically decreased in piglets fed with CPB or antibiotics, compared with the control group. Furthermore, CPB intervention increased the relative abundances of Prevotella_9, Megasphaera and Prevotella_2, while decreased the relative abundance of Prevotellaceae_NK3B31_group. Correlation analysis revealed that there was good correlation between serum indexes and fecal microbiota. It was suggested that CPB might be a promising antibiotic alternative for improving piglet health and immunity, decreasing mortality by positively altering gut microbiota.

17.
Ecotoxicol Environ Saf ; 194: 110420, 2020 May.
Article in English | MEDLINE | ID: mdl-32151861

ABSTRACT

In order to alleviate toxic effects of aflatoxins B1 (AFB1) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB1 biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB1 biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB1, ZEA + AFB1, ZEA + CP1, AFB1+CP2, ZEA + AFB1+CP3, respectively. The experiment showed that AFB1 or AFB1+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB1+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB1+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB1 and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers.


Subject(s)
Aflatoxin B1/toxicity , Chickens/growth & development , Gastrointestinal Microbiome/drug effects , Probiotics/pharmacology , Zearalenone/toxicity , Animal Feed/analysis , Animal Feed/microbiology , Animals , Bacillus subtilis/isolation & purification , Chickens/metabolism , Diet , Dietary Supplements , Firmicutes/isolation & purification , Random Allocation
18.
Toxins (Basel) ; 11(10)2019 09 20.
Article in English | MEDLINE | ID: mdl-31547122

ABSTRACT

In order to remove zearalenone (ZEA) detriment-Bacillus subtilis, Candida utilis, and cell-free extracts from Aspergillus oryzae were used to degrade ZEA in this study. The orthogonal experiment in vitro showed that the ZEA degradation rate was 92.27% (p < 0.05) under the conditions that Candida utilis, Bacillus subtilis SP1, and Bacillus subtilis SP2 were mixed together at 0.5%, 1.0%, and 1.0%. When cell-free extracts from Aspergillus oryzae were combined with the above probiotics at a ratio of 2:1 to make mycotoxin-biodegradation preparation (MBP), the ZEA degradation rate reached 95.15% (p < 0.05). In order to further investigate the MBP effect on relieving the negative impact of ZEA for pig production performance, 120 young pigs were randomly divided into 5 groups, with 3 replicates in each group and 8 pigs for each replicate. Group A was given the basal diet with 86.19 µg/kg ZEA; group B contained 300 µg/kg ZEA without MBP addition; and groups C, D, and E contained 300 µg/kg ZEA added with 0.05%, 0.10%, and 0.15% MBP, respectively. The results showed that MBP addition was able to keep gut microbiota stable. ZEA concentrations in jejunal contents in groups A and D were 89.47% and 80.07% lower than that in group B (p < 0.05), indicating that MBP was effective in ZEA biodegradation. In addition, MBP had no significant effect on pig growth, nutrient digestibility, and the relative mRNA abundance of estrogen receptor alpha (ERα) genes in ovaries and the uterus (p > 0.05).


Subject(s)
Aspergillus oryzae/metabolism , Mycotoxins/metabolism , Probiotics/pharmacology , Swine/growth & development , Zearalenone/metabolism , Animals , Biodegradation, Environmental , Estrogen Receptor alpha/genetics , Female , Gastrointestinal Microbiome , Swine/metabolism , Vulva/pathology
19.
AMB Express ; 9(1): 137, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31482249

ABSTRACT

Deoxynivalenol (DON) is one of the mycotoxins most frequently encountering in cereal-based foods throughout the world. Saccharomyces cerevisiae was used to alleviate porcine jejunal epithelia cell (IPEC-J2) injury induced by DON in this study. The results indicated that cell viability and proliferation rates were significantly decreased when DON concentrations were increased from 0 to 64 µM after 24 h incubation (p < 0.05). The longer incubation time and higher DON concentrations would cause more serious effects on cell viability. S. cerevisiae could significantly degrade DON and decrease lactic dehydrogenase (LDH) release in the cells induced by DON (p < 0.05). DON (4 µM) could increase necrotic and apoptotic cell rates as well as decrease viable cell rates, compared with the control group (p < 0.05). However, S. cerevisiae addition in the DON group could decrease necrotic, late apoptotic and early apoptotic cell rates by 38.05%, 46.37% and 44.78% respectively, increase viable cell rates by 2.35%, compared with the single DON group (p < 0.05). In addition, S. cerevisiae addition could up-regulate mRNA abundances of IL-6, IL-8 and IL-10 in IPEC-J2 cells (p < 0.05), but down-regulate mRNA abundances of tight junction proteins (TJP-1) and occludin by 36.13% and 50.18% at 1 µM of DON (p < 0.05). It could be concluded that S. cerevisiae was able to alleviate IPEC-J2 cell damage exposed to DON.

20.
Toxins (Basel) ; 11(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30609651

ABSTRACT

Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health.


Subject(s)
Aflatoxin B1/toxicity , Aspergillus oryzae/enzymology , Epithelial Cells/drug effects , Probiotics/pharmacology , Zearalenone/toxicity , Animals , Apoptosis Regulatory Proteins/genetics , Cell Line , Cell Survival/drug effects , Epithelial Cells/metabolism , Interleukin-6/genetics , Jejunum/cytology , Membrane Transport Proteins/genetics , Occludin/genetics , Swine , Zonula Occludens-1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...