Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 669: 393-401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718592

ABSTRACT

Functionalizing organic polymers is an effective strategy for enhancing their photocatalytic performance. However, this approach is currently limited by specific motifs, complex preparation methods, and an unclear electron transfer mechanism. Here, we present a meticulously designed structure of perylene diimide connected with poly (barbituric acid trimer) through self-assembled hydrogen bonding. In particular, the local chemical environment of the two components is adjusted by hydrogen bond-induced dipole-dipole interactions, leading to the emergence of a significant inherent electric field. Additionally, the formation of hydrogen bonds provides electronic pathways that facilitate charge transfer from perylene to adjacent units. Moreover, the distinctive electronic structure enhances polarity transfer and improves activation and adsorption capabilities for reactive molecules. Ultimately, B-PDI exhibits outstanding oxidation rates for benzylamine to N-benzylidene-benzylamine (10.03 mmol g-1h-1) and selectivity (>99.99 %). Our work offers a widely popular approach for enhancing the photocatalytic activity of organic semiconductor materials by constructing hydrogen bonds in heterogeneous molecules.

2.
J Colloid Interface Sci ; 665: 999-1006, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579390

ABSTRACT

Piezo-photocatalytic water (deuterium oxide) decomposition is a promising strategy for realizing renewable energy, but the manipulation of the polar center remains a big challenge. This study uses a simple low-temperature hydrothermal process to successfully manufacture ZnmIn2Sm+3 (m = 1-3) (ZnIn2S4, Zn2In2S5 and Zn3In2S6). Incorporating both experimental and theoretical analyses, the structural contraction and local polarization of the Zn-S bond in Zn2In2S5 enhance the piezoelectric response and surface charge accumulation, which facilitate charge transfer and reduce the activation energy of water. Remarkably, Zn2In2S5 exhibits excellent piezoelectric photocatalytic total water splitting performance (H2/O2: 4284.72/1967.00 µmol g-1h-1), which is 1.77 times that of photocatalytic performance. Moreover, a significant enhancement in D2O splitting performance can be obtained for the optimized Zn2In2S5. Our work offers valuable insights into the disclosure of local polarization in catalysts for enhancing piezo-photocatalytic overall water splitting.

3.
J Org Chem ; 89(5): 3033-3048, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38372254

ABSTRACT

A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.

4.
Org Lett ; 26(1): 344-349, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38147593

ABSTRACT

In this study, we present a nickel-catalyzed reductive C(sp3)-Sb coupling of unactivated alkyl chlorides with chlorostibines. This approach is highly versatile, tolerating various functional groups such as acetal, alkene, nitrile, amine, ester, silyl ether, thioether, and various heterocyclic compounds. Notably, the late-stage modification of bioactive molecules and the satisfactory anticancer activity against cancerous MDA-MB-231 also demonstrate the potential application.


Subject(s)
Chlorides , Nickel , Amines , Catalysis , Ethers , MDA-MB-231 Cells
5.
J Org Chem ; 89(1): 183-190, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38141025

ABSTRACT

A Sb,N ligand (L-Sb) for Pd-catalyzed double N-arylation of primary amines was developed. This trivalent ligand L-Sb, containing a 5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine skeleton and stable under air and moisture, could be synthesized facilely on a gram scale from chlorostibine (1) and cyclopentylmagnesium bromide. L-Sb showed excellent catalytic performance in Pd2(dba)3-catalyzed double N-arylation of 2,2'-dibromo-1,1'-biphenyl (2) with primary amines (3), affording functionalized carbazoles in good yields. This Pd2(dba)3/L-Sb-catalyzed double N-arylation, the first example of the application of trivalent organostibines as a ligand in N-arylation, featured the following advantages: small catalyst loading, wide functional group tolerance, good yields, and ease of gram-scale synthesis.

6.
J Org Chem ; 88(23): 16196-16215, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37955519

ABSTRACT

A simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of para-quinone methides (p-QMs) with ketones via the in situ activation of C(sp3)-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of p-QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism. This finding may have potential application in the selective diarylmethylation of ketones at the α-C position in organic synthesis.

7.
Top Curr Chem (Cham) ; 381(5): 25, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610550

ABSTRACT

Development of nitrogen-rich energetic materials has gained much attention because of their remarkable properties including large nitrogen content and energy density, good thermal stability, low sensitivity, good energetic performance, environmental friendliness and so on. Tetrazole has the highest nitrogen and highest energy contents among the stable azoles. The incorporation of diverse explosophoric groups or substituents into the tetrazole skeleton is beneficial to obtain high-nitrogen energetic materials having excellent energetic performance and suitable sensitivity. In this review, the development of high-nitrogen energetic materials based on tetrazole skeleton is highlighted. Initially, the property and utilization of nitrogen-rich energetic materials are presented. After showing the advantage of the tetrazole skeleton, the high-nitrogen energetic materials based on tetrazole are classified and introduced in detail. Based on different types of energetic materials (EMs), the synthesis and properties of nitrogen-rich energetic materials based on mono-, di-, tri- and tetra-tetrazole are summarized in detail.


Subject(s)
Skeleton , Tetrazoles , Azoles , Nitrogen
8.
J Org Chem ; 88(17): 12502-12518, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37579226

ABSTRACT

A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of ß-ketophosphine oxides, ß-ketophosphinates, and ß-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired ß-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.

9.
J Colloid Interface Sci ; 651: 68-75, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37540931

ABSTRACT

Designing a robust built-in electric field (BF) is a charming strategy for enhancing the separation and transportation of charges via introducing large π-conjugated molecules. However, it has flexible or semiflexible geometries, which significantly disorder the crystalline and deteriorated the built-in electric field. Here, a straightforward tactic for creating a cyano-functionalized smaller D (benzene) - A (triazine) units in PDI- triazine based polymer (PDIMB) to enhance intrinsic molecule dipole has been proposed. The density functional theory (DFT) calculation revealed that the modification of smaller D-A groups destroyed the π-localization of charges, which enhanced the molecular dipole and the BF for promoting the exciton dissociation and charge transfer. Moreover, it not only exposed number of active sites, but also enhanced the interfacial molecular interacting. Therefore, PDIMB-2 exhibits high activity (24.5 mmol g-1 h-1) and selectivity (>99%) for the photooxidation of benzylamine to N-benzylidenebenzylamine under mild conditions. Our work offers a potential and simple synthetic option for enhancing the built-in electric field of polymer.

10.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446435

ABSTRACT

Converting and storing solar energy directly as chemical energy through photoelectrochemical devices are promising strategies to replace fossil fuels. Metal oxides are commonly used as photoanode materials, but they still encounter challenges such as limited light absorption, inefficient charge separation, sluggish surface reactions, and insufficient stability. The regulation of surface oxygen species on metal oxide photoanodes has emerged as a critical strategy to modulate molecular and charge dynamics at the reaction interface. However, the precise role of surface oxygen species in metal oxide photoanodes remains ambiguous. The review focuses on elucidating the formation and regulation mechanisms of various surface oxygen species in metal oxides, their advantages and disadvantages in photoelectrochemical reactions, and the characterization methods employed to investigate them. Additionally, the article discusses emerging opportunities and potential hurdles in the regulation of surface oxygen species. By shedding light on the significance of surface oxygen species, this review aims to advance our understanding of their impact on metal oxide photoanodes, paving the way for the design of more efficient and stable photoelectrochemical devices.

11.
Angew Chem Int Ed Engl ; 62(38): e202307246, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37488928

ABSTRACT

Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm-2 at 1.23 VRHE . This study introduces a new approach for constructing core-shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.

12.
J Org Chem ; 88(5): 3089-3108, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36763008

ABSTRACT

4-Sulfanyl-substituted 1,2,3-triazoles were provided regioselectively with good yields and broad scope via consecutive t-BuOK-promoted dephosphinylation of 1-phosphinyl-2-sulfanylethynes and copper-catalyzed azide-alkyne cycloadditions (CuAAC) with alkyl azides. Unsymmetrically substituted ditriazoles were successfully obtained using a tandem dephosphinylative CuAAC protocol with diazides. Direct CuAAC of the 1-phosphinyl-2-sulfanylethynes with azides afforded regioisomeric mixtures of 4-phosphinyl-5-sulfanyl- and 5-phosphinyl-4-sulfanyl-1,2,3-triazoles that were easily separable from one another. When the phosphinyl- and sulfanyl-substituted triazoles were treated with t-BuOK, the dephosphination proceeded smoothly, yielding the corresponding 5- and 4-sulfanyltriazoles, respectively. 5-(1-Aryl-1-hydroxymethyl)-4-sulfanyltriazoles were synthesized by stepwise treatment of 5-phosphinyl-4-sulfanyltriazole with MeMgBr and arylaldehydes. Additionally, Ph2P(O) and RS groups in the triazoles were easily converted to Ph2P and RSO2 by PhSiH3-reduction and m-CPBA-oxidation, respectively. Following the dephosphinylative CuAAC of 1-phosphinyl-2-(4-t-butylphenylsulfanyl)ethyne with aryl azides and m-CPBA-oxidation, potent antagonists of pregnane X receptor LC-58 and LC-59 were successfully produced.

13.
Org Lett ; 25(4): 676-681, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36682056

ABSTRACT

Herein we describe a method to produce 2-haloalkoxy-3-substituted quinolines via the cyclization of 2-alkynylanilines with TMSCF3 and THF. This synthetic method uses inexpensive and easy-to-handle TMSCF3 and employs a commercially available CuI catalyst to transform a broad range of 2-alkynylanilines into versatile 2-difluoromethoxy-3-substituted quinolines and 2-iodoalkoxy-3-substituted quinolines with excellent chemoselectivity.

14.
Org Lett ; 25(2): 389-394, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36607146

ABSTRACT

In this paper, a convenient synthesis of 2,5-diacylthiophenes and ß-acyl allylic methylsulfones from aryl methyl ketones with dimethyl sulfoxide (DMSO) through Selectfluor-promoted cascade cyclization and cross-coupling reactions by simple solvent modification is described. This method enables the formation of new C-C and C-S bonds via the selection of different solvent ratios, in which DMSO molecules as synthons can be selectively introduced into methyl ketones. The features of this transformation include readily available starting materials, excellent chemoselectivity, and good functional group tolerance.

15.
J Org Chem ; 88(10): 6304-6312, 2023 May 19.
Article in English | MEDLINE | ID: mdl-36001795

ABSTRACT

Recently, water promotion effects in the selective oxidation of benzyl alcohol to benzaldehyde have been experimentally recognized and identified. However, the effects of water on the photocatalytic selective oxidation of toluene into benzaldehyde remain elusive. In this work, the Ti3O9H6 clusters in different solvents (water and toluene solvent) are used to study the water-induced effects in photocatalytic oxidation reactions in kinetics and thermodynamics using density functional theory (DFT) calculations. In addition, the influences of the OH groups on catalysts (Ti-OH bonds) from photocatalytic water splitting are also considered. The results clearly demonstrate the water-induced double-edged sword effects in the photocatalytic selective oxidation of toluene. We expect that our work can not only shed light on the mechanisms of photocatalytic selective oxidation of toluene into benzaldehyde and other activation reactions of sp3 C-H bonds but also design and modulate highly efficient photocatalysts.

16.
J Colloid Interface Sci ; 630(Pt B): 452-459, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36334482

ABSTRACT

Fluorine atoms doping was reported in experiment to reduce the band gap, improve the oxidation potential of hole, and polarize the electron distribution of polymeric carbon nitride (PCN). However, the relationships between different types of F doping and the roles of F doping in electronic and optical properties remain elusive. In this work, we investigate several F doping types in PCN and analyze their different roles in electronic and optical properties with the first-principles calculations. The results show that two stable and cooperative F doping types are found, one is to form the C (sp3)-F bond (Fcorner type), and the other is F atom replacing amino group -NH2 (FN3 type) forming covalent C-F bond. The Fcorner doping reduces the energy level of valence-band maximum (VBM), causes excited electron-hole distribution polarized, and increases the hole distribution on F atoms, which strengthens the capacity of photocatalytic oxidation and improves the electron-hole separation efficiency, while FN3 type doping plays the roles of reducing the bandgap and improving the light absorption. In addition, under the synergistic action of two types of F doping, the adsorption energy of toluene on F-codoped PCN is greatly enhanced, improving the ability of photocatalytic activation of toluene. Our work develops a new understanding of F doping and reveals the roles of different types of F doping, providing a rationale for designing and regulating more efficient photocatalysts and improving the properties of photocatalytic toluene oxidation.

17.
RSC Adv ; 12(54): 35215-35220, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540229

ABSTRACT

We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant. A diverse range of 3-aryl benzofuran-2(3H)-ones, toluenes, and phenols undergo C-H bond cleavage to generate all-carbon quaternary centers in good yields, making this protocol useful for the synthesis of complex molecules. A gram scale experiment was performed in good yield.

18.
Langmuir ; 38(47): 14439-14450, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36378533

ABSTRACT

A four-stage oscillating feedback millireactor with splitters (S-OFM) was designed to improve the mixing performance based on chaotic advection. Three-dimensional CFD simulations were used to investigate its flow characteristics and mixing performance, and the generation mechanisms of secondary flows were examined. The results show that the mixing index (MIcup) increased with the increase in the Reynolds number (Re), and MIcup could reach 99.8% at Re = 663. Poincaré mapping and Kolmogorov entropy were adopted to characterize the chaotic advection intensity, which indicates that there is a intensity increase with the increase in Re. In addition, the results of Villermaux-Dushman experiments demonstrate that S-OFM performs excellently, and the mixing time could reach 1.04 ms at Re = 2764. Finally, S-OFM was successfully used to synthesize CdS nanoparticles with cubic hexagonal phase junctions. At a flow rate of 180 mL/min, the average particle size was 10.5 nm and the particle size distribution was narrow (with a coefficient of variation of 0.14).

19.
Top Curr Chem (Cham) ; 380(6): 55, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306032

ABSTRACT

Dimethyl sulfoxide (DMSO), as extremely important aprotic polar solvent and reaction medium, has attracted widespread attention from chemists in recent years due to its wide range of uses and the multiple functions it displays in various chemical processes. Especially in the past decade, dimethyl sulfoxide has become increasingly favored as a synthon in organic chemistry, resulting in great progress in this research field. In this context, this review provides a comprehensive summary of the literature on the recent progress in organic synthesis using dimethyl sulfoxide as a synthon, covering all the reports from 1 January 2016 to 11 May 2022. This type of reaction is mainly performed by transferring one or more units of dimethyl sulfoxide, such as oxygen (-O-, =O), methyl (-CH3), methylene (-CH2-), methylidene (=CH2), methine (=CH-), donor of formylation (-CHO), sulfur (-S-), methylthio (-SMe), methyl sulfoxide (-SOMe), donor of methyl thiomethylation (-CH2SMe), or donor of methyl sulfoxide methylation (-CH2SOMe), to the target molecules. At the same time, we hope that this review will stimulate future studies and promote developments in this area.


Subject(s)
Chemistry, Organic , Dimethyl Sulfoxide , Dimethyl Sulfoxide/chemistry , Sulfoxides , Solvents , Sulfur/chemistry
20.
Org Lett ; 24(38): 6993-6998, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36122178

ABSTRACT

Herein, we describe a method for synthesizing (E)-ß-iodo-α,ß-unsaturated aldehydes via the iodoformylation of terminal alkynes with TMSCF3 and NaI. This synthetic method uses inexpensive and easy-to-handle chemical feedstocks and employs a commercially available CuI catalyst. It can transform a broad range of terminal alkynes into bis-electrophile (E)-ß-iodo-α,ß-unsaturated aldehydes with excellent chemoselectivity, regioselectivity, and stereoselectivity. Moreover, it was demonstrated that this protocol has abundant organic reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...