Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 351: 124059, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38703979

ABSTRACT

The hazards of man-made chiral compounds are of great public concern, with reports of worrying stereoselective compounds and an urgent need to assess their transport. This study evaluated the transport of 2-arylpropionic acid derivatives enantiomers (2-APA) in porous media under a variety of solution chemistry conditions via column packing assays. The results revealed the introduction of Malic acid (MA) enantiomers enhanced the mobility of 2-APA enantiomers, but the enhancement effect was different for different 2-APA enantiomers. Batch sorption experiments confirmed that the MA enantiomers occupied the sorption site of the quartz sand, thus reducing the deposition of the 2-APA enantiomer. Homo- or heterochirality between 2-APA and MA dominates the transport of 2-APA enantiomers, with homochirality between them triggering stronger retention and vice versa. Further evaluating the effect of solution chemistry conditions on the transport of 2-APA enantiomers, increased ionic strength attenuated the mobility of 2-APA enantiomers, whereas introduced coexisting cations enhanced the retention of 2-APA enantiomers in the column. The redundancy analyses corroborated these solution chemistry conditions were negatively correlated with the transport of 2-APA enantiomers. The coupling of pH and these conditions reveals electrostatic forces dominate the transport behavior and stereoselective interactions of 2-APA enantiomers. Distinguishing the transport of enantiomeric pair helps to understand the difference in stereoselectivity of enantiomers and promises to remove the more hazardous one.


Subject(s)
Propionates , Stereoisomerism , Propionates/chemistry , Porosity , Adsorption , Malates/chemistry , Hydrogen-Ion Concentration
2.
Environ Res ; 252(Pt 2): 118975, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38649018

ABSTRACT

Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.

3.
J Hazard Mater ; 469: 134044, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38493628

ABSTRACT

The research on the impact of water-soluble polymers (WSPs) on the migration and fate of plastic particles is extremely limited. This article explored the effects of polyacrylic acid (PAA, a common WSP) and physicochemical factors on the transport of polystyrene nanoparticles (PSNPs-NH2/COOH) with different functional groups in QS (quartz sand) and FOS (goethite-modified quartz sand, simulates mineral colloids). Research has shown that PAA can selectively adsorb onto the surface of PSNPs-NH2, forming ecological corona heterogeneous aggregates. This process increased the spatial hindrance and elastic repulsion, resulting in the recovery of PSNPs-NH2 always exceeding that of PSNPs-COOH. Overall, PAA can hinder the migration of PSNPs in QS but can promote their migration in FOS. When multivalent cations coexist with PAA, the transport of PSNPs in the media is primarily affected by cation bridging and CH-cation-π interaction. The presence of oxyanions and PAA prevents PSNPs from following the Hofmeister rule and promotes their migration (PO43-: 82.34 ± 0.16% to 94.63 ± 2.82%>SO42-: 81.38 ± 2.73% to 91.15 ± 0.93%>NO3-: 55.85 ± 0.70%-87.16 ± 3.80%). The findings of this study contribute significantly to a better understanding of the migration of WSPs and group-modified NPs in complex saturated porous media.

4.
J Colloid Interface Sci ; 661: 815-830, 2024 May.
Article in English | MEDLINE | ID: mdl-38330654

ABSTRACT

Piezoelectric materials can generate the built-in electric field under ultrasound assistance, which is beneficial to the separation of the photogenerated electron-hole pairs in photocatalysis. Meanwhile, the ultrasound stress usually leads to accelerate electron transfer and enhance catalytic activity. Thus, piezo-photocatalysis technique is believed to be one of the effective techniques for organic pollutant degradation. In this work, a binary piezoelectric integrated piezo-photocatalytic Z-Scheme heterojunction with bismuth ferrite (BFO) and bismuth oxycarbonate (Bi2O2CO3, BOC) based on the in situ production of Bi2O2CO3 on Bi25FeO40 surface in dichloromethane, where Bi25FeO40 was employed as piezoelectric materials and Bi source, CO2 dissolved in dichloromethane was used as carbon source. Under 60 min ultrasound and visible light irradiation, the optimal BFO/BOC presented a higher piezo-photocatalytic tetracycline (TC) degradation rate (95 %) than Bi25FeO40 (30 %) and Bi2O2CO3 (17 %). Moreover, the optimal BFO/BOC illustrated higher piezo-photocatalytic TC degradation rate under ultrasound and visible light irradiation than that under visible light condition and ultrasound condition, respectively. These results strongly demonstrated the synergistically piezo-photocatalytic degradation of TC by BFO and BOC. This work not only provides a novel piezo-photocatalyst for pollutant degradation, but also provides a novel method to prepare Bi2O2CO3-based piezo-photocatalytic composite catalyst.

5.
J Hazard Mater ; 468: 133824, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38377915

ABSTRACT

The study examined the transport behavior of the 2-aryl propionic acid (2-APA) chiral pharmaceutical enantiomers by means of a laboratory-scale saturated quartz sand column experiment. Four typical of 2-APA and their enantiomers were selected for the study under different types of chiral organic acids (COAs)-mediated effects. Differences in the transport of the 2-APA enantiomeric pairs have been identified in response to various pH, types of COAs, and enantiomeric structures of COAs. Redundancy analysis identified the factors responsible for the largest differences in transport of 2-APA enantiomeric pairs, while spectroscopic characterization and density function theory (DFT) studies elucidated the underlying mechanisms contributing to the differences in transport of enantiomeric pairs. Obvious correlations among homochirality or heterochirality between COAs and 2-APA enantiomeric pairs were observed for changes in the mobility of 2-APA. The results indicate widespread COAs significantly affect the transport behavior of chiral man-made chemicals, suggesting more attention is needed to fill the gap in the perception of the transport behavior of chiral compounds.

6.
Chemosphere ; 352: 141371, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346517

ABSTRACT

Complex wastewater has more complicated toxicity and potential harm to organisms, and synchronous REDOX of complex pollutants in wastewater has always been a bottleneck in the development of advanced oxidation technology. Herein, a Fenton-like photocatalytic system (MnFe2O4/g-C3N4 heterojunction composites) was established to simultaneously remove oxytetracycline (OTC) and Cr(Ⅵ) in this study. The MnFe2O4/g-C3N4 heterojunction composites exhibited outstanding catalytic performances for OTC and Cr(Ⅵ) removal, and more than 90% of OTC and nearly 100% of Cr(Ⅵ) were simultaneously removed within 1 min photocatalysis. The photo-generared electrons and holes played significant roles in Cr(Ⅵ) reduction and OTC degradation, respectively. Moreover, the heterojunction formed between g-C3N4 and MnFe2O4 effectively accelerated the separation and migration of photogenerated carriers. The OTC degradation was mainly initiated by cracking of benzene rings, degradation of substituents, and removal of groups such as -OH, -NH2, -CH3, and -CONH2, resulting in generation of small molecular substances; Cr(Ⅲ) was the main reduction product of Cr(Ⅵ). Meanwhile, the MnFe2O4/g-C3N4 heterojunction composites also exhibited excellent stability and reusability in removal of OTC and Cr(Ⅵ).


Subject(s)
Oxytetracycline , Wastewater , Chromium , Oxidation-Reduction
7.
Environ Pollut ; 337: 122547, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37709123

ABSTRACT

Biodegradable microplastics (BMPs) pose serious environmental problems to soil organisms, and their adsorption capacity might make pesticides more dangerous for soil organisms. Therefore, in this study, polylactic acid (PLA) BMPs and imidacloprid (IMI) were used as a representative of BMPs and pesticides, respectively. Eisenia fetida was used as a test animal to investigate the effects of environmentally relevant concentrations of single and compound contaminated PLA BMPs and IMI on mortality, growth, number of offspring, tissue damage, and gut microorganisms of E.fetida. Exposure to PLA BMPs treatment and PLA BMPs + IMI treatment resulted in a sustained increase in E.fetida mortality, reaching 16.7% and 26.7%, respectively. The growth inhibition rate of single treatments was significantly increased. The compound contamination had the greatest effect on E.fetida offspring compared to the control. PLA BMPs and IMI cause histological damage to E.fetida, with the compound treatment causing the most severe damage. Based on the results of 16S sequencing, the bacterial communities in E.fetida gut and soil treated to PLA BMPs and IMI were significantly different. PLA BMPs + IMI treatment suppresses the abundance and diversity of E.fetida gut microorganisms, disrupting the homeostasis of bacterial communities and causing immune and metabolic dysfunction. These findings highlight the more severe damage of combined PLA BMPs and IMI pollution to E.fetida, and help to assess the risk of earthworm exposure to environmentally relevant concentrations of PLA BMPs and IMI.


Subject(s)
Gastrointestinal Microbiome , Oligochaeta , Pesticides , Soil Pollutants , Animals , Microplastics/metabolism , Plastics/toxicity , Soil Pollutants/analysis , Pesticides/metabolism , Polyesters/metabolism , Soil
8.
Environ Pollut ; 330: 121804, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37172771

ABSTRACT

With the utilization of degradable plastics in the agricultural film and packaging industries, degradable microplastics (MPs) with strong mobility distributed in the underground environment may serve as carriers for heavy metals. It is essential to explore the interaction of (aged) degradable MPs with Cd(Ⅱ). The adsorption and co-transport behavior of different types of (aged) MPs (polylactic acid (PLA), polyvinyl chloride (PVC)) with Cd(Ⅱ) were investigated through batch adsorption experiments and column experiments under different conditions, respectively. The adsorption results showed that the adsorptive capacity of (aged) PLA with O-functional groups, polarity, and more negative charges was stronger than that of PVC and aged PVC, which was attributed to the binding of (aged) PLA to Cd(Ⅱ) through complexation and electrostatic attraction. The co-transport results indicated that the promotion of Cd(Ⅱ) transport by MPs followed the order of aged PLA > PLA > aged PVC > PVC. This facilitation was more pronounced under conditions of stronger transport of MPs and favorable attachment of Cd(Ⅱ) to MPs. Overall, the combination of strong adsorption affinity and high mobility helped (aged) PLA act as effective carriers for Cd(Ⅱ). The DLVO theory well explains the transport behavior of Cd(Ⅱ)-MPs. These findings provide new insights into the co-transport of degradable MPs and heavy metals in the subsurface environment.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Microplastics , Plastics , Cadmium , Adsorption , Porosity , Polyesters , Water Pollutants, Chemical/analysis
9.
Water Res ; 236: 119939, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37054611

ABSTRACT

Mulch film microplastics (MPs) could act as a vector for agricultural chemicals due to their long-term presence in farmland environments. As a result, this study focuses on the adsorption mechanism of three neonicotinoids on two typical agricultural film MPs, polyethylene (PE) and polypropylene (PP), as well as the effects of neonicotinoids on the MPs transport in quartz sand saturated porous media. The findings revealed that the adsorption of neonicotinoids on PE and PP was a combination of physical and chemical processes, including hydrophobic, electrostatic and hydrogen bonding. Acidity and appropriate ionic strength (IS) were favorable conditions for neonicotinoid adsorption of on MPs. The results of column experiments showed that the presence of neonicotinoids, particularly at low concentrations (0.5 mmol L-1), could promote the transport of PE and PP in the column by improving the electrostatic interaction and hydrophilic repulsion of particles. The neonicotinoids would be adsorbed on MPs through hydrophobic action preferentially, whereas excessive neonicotinoids could cover the hydrophilic functional groups on the surface of MPs. Neonicotinoids reduced the response of PE and PP transport behavior to pH changes. 0.005 mol L-1 NaCl ameliorated the migration of MPs by increasing their stability. Because of its highest hydration ability and the bridging effect of Mg2+, Na+ had the most prominent transport promoting effect on PE and PP in MPs-neonicotinoid. This study shows that the increased environmental risk caused by the coexistence of microplastic particles and agricultural chemicals is unneglectable.


Subject(s)
Insecticides , Water Pollutants, Chemical , Microplastics , Plastics/chemistry , Agriculture , Polypropylenes , Polyethylene , Neonicotinoids , Adsorption , Water Pollutants, Chemical/chemistry
10.
Chemosphere ; 323: 138272, 2023 May.
Article in English | MEDLINE | ID: mdl-36863628

ABSTRACT

Widely used for soil amendment, carbon sequestration, and remediation of contaminated soils, biochars (BCs) inevitably produce a large number of nanoparticles with relatively high mobility. Geochemical aging alters chemical structure of these nanoparticles and thus affect their colloidal aggregation and transport behavior. In this study, the transport of ramie derived nano-BCs (after ball-milling) was investigated by different aging treatments (i.e., photo (PBC) and chemical aging (NBC)) as well as the managing BC under different physicochemical factors (i.e., flow rates, ionic strengths (IS), pH, and coexisting cations). Consequences of the column experiments indicated aging promoted the mobility of the nano-BCs. Compared to the nonaging BC, consequences of spectroscopic analysis demonstrated the aging BCs exhibited a number of tiny corrosion pores. Both of these aging treatments contribute to a more negative zeta potential and a higher dispersion stability of the nano-BCs, which is caused by the abundance of O-functional groups. Also the specific surface area and mesoporous volume of both aging BCs increased significantly, with the increase being more pronounced for NBC. The breakthrough curves (BTCs) obtained for the three nano-BCs were modelled by the advection-dispersion equation (ADE), which included first-order deposition and release terms. The ADE revealed high mobility of aging BCs, which meant their retention in saturated porous media was reduced. This work contributes to a comprehensive understanding of the transport of aging nano-BCs in the environment.


Subject(s)
Nanoparticles , Soil , Boehmeria/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , Spectrometry, X-Ray Emission , Hydrogen-Ion Concentration , Movement , Cations/chemistry , Environment , Soil/chemistry , Time Factors , Models, Theoretical
11.
Environ Pollut ; 323: 121285, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796666

ABSTRACT

The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Microplastics/metabolism , Plastics/metabolism , Oxidative Stress , Neonicotinoids/toxicity , Neonicotinoids/metabolism , Polyesters/metabolism , Superoxide Dismutase/metabolism , Gene Expression , Soil Pollutants/analysis , Catalase/metabolism , DNA Damage , Malondialdehyde/metabolism
12.
Chemosphere ; 316: 137846, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646180

ABSTRACT

Propofol is an intravenous anesthetic injection extensively used in clinic, which has been proved to be neurotoxic in humans. Improper use and disposal of propofol may lead to its release into the aquatic environment, but the potential ecological risk of propofol to aquatic organisms remains poorly understood. For this study, we comprehensively explored the ecotoxicological effects and potential mechanisms of propofol (0.04, 0.2 and 2 mg L-1) on 120 hpf zebrafish (Danio rerio) embryos from physiological, biochemical, and molecular perspectives. The results showed that propofol has moderate toxicity on zebrafish embryos (96 h LC50 = 4.260 mg L-1), which could significantly reduce the hatchability and delay the development. Propofol can trigger reactive oxygen species (ROS) generation, lipid peroxidation (Malondialdehyde, MDA) and DNA damage (8-hydroxy-2-deoxyguanosine, 8-OHdG). The glutathione peroxidase (GPX) activity of zebrafish embryos in 0.04 and 0.2 mg L-1 propofol treatment group was activated in response to oxidative damage, while activities of superoxide dismutase (SOD), catalase (CAT) and GPX in zebrafish treated with 2 mg L-1 was significant inhibited compared with the control group (p<0.05). Moreover, the expression of antioxidant genes and related pathways was inhibited. Apoptosis was investigated at genes level and histochemistry. Molecular docking confirmed that propofol could change in the secondary structure of acetylcholinesterase (AChE) and competitively inhibited acetylcholine (ACh) binding to AChE, which may disturb the nervous system. These results described toxic response and molecular mechanism in zebrafish embryos, providing multiple aspects about ecological risk assessment of propofol in water environment.


Subject(s)
Propofol , Water Pollutants, Chemical , Animals , Humans , Zebrafish/metabolism , Propofol/toxicity , Propofol/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism , Oxidative Stress , Antioxidants/metabolism , Superoxide Dismutase/metabolism
13.
Environ Pollut ; 317: 120764, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36455772

ABSTRACT

Propofol, one of the most widely used intravenous anesthetic in clinical practice, has been reported to impair cognitive and memory function. However, the toxicological effects of propofol on aquatic organisms are still poorly understood. This study explored the toxic effects of chronic propofol exposure (0.008, 0.04, and 0.2 mg L-1) on adult zebrafish from biochemical, transcriptional, and molecular level after 7, 14, 21 and 28 days of exposure. Results indicated that the reactive oxygen species (ROS) levels were significantly upregulated during the 28 days exposure period, and excessive ROS caused lipid peroxidation, resulting in increased malondialdehyde (MDA) contents in the zebrafish brain. In order to relieve the oxidative damage induced by the excessive ROS, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) were significantly activated, and detoxification enzyme (glutathione S-transferase, GST) activities showed an "activation-inhibition" trend. However, the antioxidant enzymes and detoxification enzyme system could not eliminate the excessive ROS in time and thus caused DNA damage in zebrafish brain. The olive tail moment (OTM) values displayed a "dose-response" relationship with propofol concentrations. Meanwhile, the transcription of related genes of Nrf2-Keap1 pathway was activated. Further molecular simulation experiments suggested that propofol could directly combine with SOD/CAT to change the activity of its biological enzyme. These findings indicated that zebrafish could regulate antioxidant capacity to combat oxidative stress at the early exposure stage, but the activity of antioxidant enzymes were significantly inhibited with the increase of propofol exposure time. Our results are of great importance for understanding toxicological effects of propofol on aquatic organisms.


Subject(s)
Propofol , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Propofol/toxicity , Propofol/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Superoxide Dismutase/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Catalase/metabolism , Water Pollutants, Chemical/metabolism
14.
J Hazard Mater ; 441: 129834, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36067560

ABSTRACT

Metal oxides exist in porous media in the form of composite metal oxides, which can significantly affect the transport and transformation of pollutants in the soil environment. In this study, binary metal oxide porous media were prepared to explore the effects of solution chemistry, and the presence of binary metal oxides on the transport of functional group modified polystyrene nanoplastics (PSNPs) in saturated porous media. The results show that the existence of binary metal oxides significantly affects the migration ability of PSNPs in saturated porous media. The increase of ionic strength and the presence of multivalent cations affect the transport capacity of PSNPs in porous media. The types of binary metal oxides affect the migration of PSNPs in saturated porous media. The surface roughness and electrostatic interaction are important factors affecting the retention of PSNPs on the surface of binary metal oxide saturated porous media. The surface morphology has a more far-reaching impact. In addition, DLVO theory cannot fully explain the interaction between PSNPs and saturated porous media in the presence of Al3+. This study's results help provide some theoretical support for the migration of microplastics in the soil environment.


Subject(s)
Environmental Pollutants , Polystyrenes , Cations , Microplastics , Oxides , Plastics , Porosity , Soil
15.
J Environ Manage ; 324: 116431, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36352721

ABSTRACT

Cr(VI) is a class of highly toxic heavy metals. In this study, alkali-modified g-C3N4 (cOH-CN) and acid-modified g-C3N4 (cH-CN) materials were successfully synthesized, and their photocatalytic activities for Cr(VI) reduction under visible light irradiation were tested. Owing to defect structures by cH-CN and -OH group introduction by cOH-CN, the modified materials exhibited a larger surface area, more abundant pore structures, a wider visible light absorption range, higher energy gap values, and a stronger capacity for electron-hole pair separation. As a result, satisfactory Cr(VI) reduction performance was gained by these two photocatalysts. Almost all Cr(VI) was converted to Cr(III) after 60 min of treatment in the presence of these two catalysts, while it was only 30% for the pristine g-C3N4 materials. Relatively higher dosages of cH-CN and cOH-CN and acidic conditions both improved Cr(VI) reduction in the cH-CN and cOH-CN photocatalytic systems. Cr(VI) reduction was mainly initiated by free electrons in the photocatalytic system of the modified materials. Finally, Cr(VI) in the photocatalytic system was almost completely converted to Cr(III). Furthermore, the stability and recycling of the cH-CN and cOH-CN catalysts were evaluated.


Subject(s)
Chromium , Light , Chromium/chemistry , Catalysis , Electrons
16.
Article in English | MEDLINE | ID: mdl-36141677

ABSTRACT

In this study, a newly synthesized sepiolite-supported nanoscale zero-valent iron (S-nZVI) adsorbent was tested for the efficient removal of As(III) and As(V) in aqueous solution. Compared with ZVI nanoparticles, the As(III) and As(V) adsorption abilities of S-nZVI were substantially enhanced to 165.86 mg/g and 95.76 mg/g, respectively, owing to the good dispersion of nZVI on sepiolite. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model, and the adsorption isotherms were fitted with the Freundlich model, denoting a multilayer chemical adsorption process. The increase in the initial solution pH of the solution inhibited As(III) and As(V) adsorption, but a weaker influence on As(III) than As(V) adsorption was observed with increasing pH. Additionally, the presence of SO42- and NO3- ions had no pronounced effect on As(III) and As(V) removal, while PO43- and humic acid (HA) significantly restrained the As(III) and As(V) adsorption ability, and Mg2+/Ca2+ promoted the As(V) adsorption efficiency. Spectral analysis showed that As(III) and As(V) formed inner-sphere complexes on S-nZVI. As(III) oxidation and As(V) reduction occurred with the adsorption process on S-nZVI. Overall, the study demonstrated a potential adsorbent, S-nZVI, for the efficient removal of As(III) and As(V) from contaminated water.


Subject(s)
Arsenites , Water Pollutants, Chemical , Adsorption , Arsenates , Humic Substances/analysis , Iron/chemistry , Kinetics , Magnesium Silicates , Thermodynamics , Water , Water Pollutants, Chemical/analysis
17.
Sci Total Environ ; 851(Pt 1): 158099, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988619

ABSTRACT

The degradable properties of degradable plastics allow them to form microplastics (MPs) faster. Therefore, degradable MPs may easily be transported in the underground environment. Research on degradable MPs transport in porous media is necessary and urgent. In this study, polylactic acid (PLA) and polyvinyl chloride (PVC) were selected to compare the transport differences between degradable and nondegradable MPs under different factors (flow rates, ionic strengths (ISs), pH, and coexisting cations) through column experiments, and UV irradiation was used to further simulate the effect of aging on different types of MPs. Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to characterize functional groups and to determine the surface elements of MPs, respectively. The results showed that MPs were more mobile at higher flow rate, lower IS, higher pH, and monovalent cations. The order of transport capacity of MPs was PVC < aged PVC < PLA < aged PLA. This result was mainly attributed to the more negative Zeta potential and higher dispersion stability of aged PLA and PLA, which were caused by abundant O-functional groups. Compared with PVC, the O/C ratio of PLA increased significantly after aging, indicating that PLA was more prone to aging. The advection-dispersion-equation (ADE) fitted the transport data of MPs well. The interaction energy of MPs and quartz sand was accurately predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This work contributes to a comprehensive understanding of the transport of degradable MPs in the environment.


Subject(s)
Microplastics , Plastics , Cations, Monovalent , Plastics/chemistry , Polyesters , Polyvinyl Chloride , Porosity , Quartz , Sand , Spectroscopy, Fourier Transform Infrared
18.
J Hazard Mater ; 437: 129311, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35724615

ABSTRACT

Interactions of nanoplastics (NPs) with other contaminants are attracting attention, and it is essential to investigate the interaction of aged plastics with heavy metals. We obtained aged nanopolystyrene by UV radiation and investigated the effects of aged NPs on the adsorption and cotransport of Pb-(II) and Cd-(II). The results showed that the UV-aged NPs led to the enhanced adsorption capacity of heavy metals due to the increase in oxygen-containing functional groups, and the promotion of transport by the aged NPs to heavy metals was stronger than that of the pristine NPs. Furthermore, the heavy metals retained in the columns could be freed by the NPs, and the aged NPs were more capable of freed of heavy metals as carriers. In conclusion, the radiation of NPs is correlated with their ability to promote heavy metal transport, and the oxygen content on the surface of NPs plays an essential role in this process to promote the transport of heavy metals in porous media. The ADR equation and DLVO theory simulates the transport behaviour of NPs well. This study is expected to provide a new perspective for assessing the potential risk of aged NPs in soil-groundwater systems.


Subject(s)
Metals, Heavy , Microplastics , Adsorption , Oxygen , Porosity
19.
Chemosphere ; 303(Pt 1): 134990, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35595118

ABSTRACT

Massive prevalence of microplastics (MPs) in the environment has become one of the world's most serious environmental concerns. Human dependence on plastics has created a constant flow of MPs from different sources into natural environment, which has raised public concern regarding consequences of MPs coming into contact with the natural environment. Deploying constructed wetlands (CWs) to reduce MPs pollution is considered a promising method, however there are still barriers for breakthroughs in this technology, particularly knowledge gaps in the mechanisms affect removal process. Recognising this, we provide a comprehensive summary of current advances and theories regarding the mechanisms of occurrence in this research area. In this work, the bibliometric methods were first used to identify annual publication trends and topical topics of research interest. The selected documents were then statistically analyzed using VOSviewer and the 'bibliometrix' package in R to derive the annual productivity of countries or organizations, the most relevant affiliations, the most relevant authors, the most relevant sources, textual analysis, co-occurrence analysis, and cluster analysis of keywords. Finally, detailed information concerning the removal of MPs by CWs was summarised, covering the most common operational and design parameters (i.e., structure types, wetland plants, substrate materials, and microbial communities), to reveal how these parameters can be adjusted for more efficient MPs removal rate. Challenges and future directions were additionally proposed. It is hoped that the review will help identify current research trends, provide insight into the mechanisms of the removal process, and contribute further to the development of this important area.


Subject(s)
Microplastics , Water Pollutants, Chemical , Bibliometrics , Environmental Pollution , Humans , Plastics , Water Pollutants, Chemical/analysis , Wetlands
20.
J Colloid Interface Sci ; 621: 91-100, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35452932

ABSTRACT

Surfactant molecules can change the hydrophobic nature of microplastic surfaces, thereby affecting the adsorption of heavy metals in the environment onto the microplastics. It is essential to explore the role of crack structure of microplastics in the adsorption of heavy metals, especially in the presence of surfactants. In this study, polyethylene (PE) and polypropylene (PP) were evaluated for Pb(II) adsorption and desorption mechanism in the presence of two surfactants: cetyltrimethylammonium bromide (CTAB) and sodium dodecylbenzenesulfonate (SDBS). The experimental results were analyzed using kinetics and the isothermal model fitting and spectrogram (FTIR, XPS). This study showed that the application of surfactants could greatly enhance the Pb(II) adsorption capacities of PE and PP by promoting Pb(II) into the fissures. The Pb(II), S, and N contents did not significantly decrease at different depths in the presence of surfactants, and the Pb(II) content without surfactants decreased with an increasing depth. The adsorption behavior was consistent with the Bangham channel diffusion model and the DR model, suggesting that the adsorption process was related to the pore structure of the microplastics. Furthermore, the release of Pb(II) from desorption using high concentration of surfactant solution was less than that of low concentration, it was difficult to release heavy metals primarily because of the crack structure of the microplastics, especially when more surfactant molecules entered the pores. This work contributes to a better understanding of the adsorption mechanism of heavy metals on microplastics in the presence of surfactants, which will better control the ecological risks of microplastics.


Subject(s)
Metals, Heavy , Pulmonary Surfactants , Water Pollutants, Chemical , Adsorption , Excipients , Lead , Microplastics , Plastics , Polyethylene , Polypropylenes , Surface-Active Agents , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...