Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
iScience ; 27(3): 109281, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455972

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease often associated with olfactory dysfunction. Aß is a typical AD hall marker, but Aß-induced molecular alterations in olfactory memory remain unclear. In this study, we used a 5xFAD mouse model to investigate Aß-induced olfactory changes. Results showed that 4-month-old 5xFAD have olfactory memory impairment accompanied by piriform cortex neuron activity decline and no sound or working memory impairment. In addition, synapse and glia functional alteration is consistent across different ages at the proteomic level. Microglia and astrocyte specific proteins showed strong interactions in the conserved co-expression network module. Moreover, this interaction declines only in mild cognitive impairment patients in human postmortem brain proteomic data. This suggests that astrocytes-microglia interaction may play a leading role in the early stage of Aß-induced olfactory memory impairment, and the decreasing of their synergy may accelerate the neurodegeneration.

2.
Virus Res ; 341: 199322, 2024 03.
Article in English | MEDLINE | ID: mdl-38228190

ABSTRACT

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Subject(s)
Alkaloids , Emetine , Emetine/analogs & derivatives , Humans , Emetine/pharmacology , Ipecac/pharmacology , Cardiotoxicity , Antiviral Agents/toxicity
3.
BMC Psychol ; 11(1): 414, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012807

ABSTRACT

OBJECTIVE: The Macquarie Anxiety Behavioural Scale (MABS) is a newly developed scale to assess anxiety in children and teenagers. The present study aimed to evaluate the reliability and validity of the Chinese version of the MABS, as well as the measurement invariance across different age groups in a preschool-aged sample. METHODS: A total of 1007 parents with children aged 3-6 years participated in the study. Internal consistency was assessed by calculating Cronbach's alpha, McDonald's omega and average inter-item correlation values. Confirmatory factor analysis (CFA) was conducted to examine the five-factor model. Multi-group CFA was conducted to test the measurement equivalence across different age groups (3- and 4-year-olds and 5- and 6-year-olds). Convergent, divergent, and criterion-related validity were assessed with Pearson correlation coefficients. RESULTS: Internal consistency for the MABS total score was good and that of the subscales was acceptable. The CFA results showed that the five-factor structure of the MABS was supported in preschoolers (e.g., CFI = 0.929, TLI = 0.914, RMSEA = 0.050). In addition, scalar invariance of the MABS was supported across different age groups (e.g., ΔCFI = - 0.003, ΔTLI = 0, ΔRMSEA = 0). Furthermore, the MABS showed good convergent and divergent validity as well as criterion-related validity. CONCLUSION: The Chinese version of the MABS demonstrated satisfactory psychometric properties and appeared to be a valid and reliable instrument for measuring anxiety in preschool children.


Subject(s)
Anxiety , Parents , Adolescent , Humans , Child, Preschool , Child , Surveys and Questionnaires , Psychometrics , Reproducibility of Results , Anxiety/diagnosis
4.
Inorg Chem ; 62(27): 10704-10712, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37365016

ABSTRACT

P-doping into metal oxides has been demonstrated as a valid avenue to ameliorate electrochemical performance because it can tune the electronic structures and increase the active sites for an electrochemical reaction. However, it usually results in a low P-doping concentration via the commonly used gas phosphorization method. In this work, an activation-assisted P-doping strategy was explored to significantly raise the P-doping concentration in cobalt carbonate hydroxide hydrate (CCHH). The activation treatment increased active sites for electrochemical reaction and endowed the sample with a high P content in the subsequent gas phosphorization process, thereby greatly enhancing the conductivity of the sample. Therefore, the final CCHH-A-P electrode exhibited a high capacitance of 6.62 F cm-2 at 5 mA cm-2 and good cyclic stability. In addition, the CCHH-A-P//CC ASC with CCHH-A-P as the positive electrode and carbon cloth as the negative electrode provided a high energy density of 0.25 mWh cm-2 at 4 mW cm-2 as well as excellent cycling performance with capacitance retention of 91.2% after 20,000 cycles. Our work shows an effective strategy to acquire Co-based materials with high-concentration P-doping that holds great potential in boosting the electrochemical performance of electrode materials via P-doping technology.

5.
J Mol Biol ; 435(5): 167973, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36690070

ABSTRACT

The SARS-CoV-2 coronavirus has caused a global pandemic. Despite the initial success of vaccines at preventing infection, genomic variation has led to the proliferation of variants capable of higher infectivity. Mutations in the SARS-CoV-2 genome are the consequence of replication errors, highlighting the importance of understanding the determinants of SARS-CoV-2 replication fidelity. The RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit for SARS-CoV-2 RNA replication and genome transcription. Here, we report the fidelity of ribonucleotide incorporation by SARS-CoV-2 RdRp (nsp12), along with its co-factors nsp7/nsp8, using steady-state kinetic analysis. Our analysis suggests that in the absence of the proofreading subunit (nsp14), the nsp12/7/8 complex has a surprisingly low base substitution fidelity (10-1-10-3). This is orders of magnitude lower than the fidelity reported for other coronaviruses (10-6-10-7), highlighting the importance of proofreading for faithful SARS-CoV-2 replication. We performed a mutational analysis of all reported SARS-CoV-2 genomes and identified mutations in both nsp12 and nsp14 that appear likely to lower viral replication fidelity through mechanisms that include impairing the nsp14 exonuclease activity or its association with the RdRp. Our observations provide novel insight into the mechanistic basis of replication fidelity in SARS-CoV-2 and the potential effect of nsp12 and nsp14 mutations on replication fidelity, informing the development of future antiviral agents and SARS-CoV-2 vaccines.


Subject(s)
RNA-Dependent RNA Polymerase , Ribonucleotides , SARS-CoV-2 , Virus Replication , Humans , Kinetics , Ribonucleotides/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
6.
J Colloid Interface Sci ; 626: 506-514, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35809439

ABSTRACT

Micromorphology and conductivity are two vital factors for the practical capacitance of the electrode materials for supercapacitors. In this work, a novel two-step electrochemical activation method involving a cyclic voltammetry (CV) treatment within 0-0.7 V followed by a CV treatment within -1.2-0 V is explored to induce the micromorphology and phase transformation of the cobalt chloride carbonate hydroxide hydrate (CCCH) nanoneedle arrays. The first-step activation transforms the CCCH to Co(OH)2 and then the reversible transformation between Co(OH)2 and CoOOH generates plenty of pores in the sample, thereby increasing the specific capacitance from 0.54 to 1.74 F cm-2 at the current density of 10 mA cm-2. The second-step activation inducing the reversible transformation between Co(OH)2 and Co not only endows the final sample with a nanosheets-assembled fasciculate structure but also decreases the internal resistance via generating Co0 in the final sample (CCCH-P75N50). Consequently, the CCCH-P75N50 shows a high specific capacitance of 3.83 F cm-2 at the current density of 10 mA cm-2. Besides, the aqueous asymmetric supercapacitor assembled with CCCH-P75N50 and commercial conductive carbon cloth (CC) delivers a high energy density of 2.75 mWh cm-3 at a power density of 37.5 mW cm-3. This work provides a novel, facile and promising method to optimize the micromorphology and conductivity of Co-based electrodes.


Subject(s)
Chlorides , Hydroxides , Carbonates , Cobalt , Electric Capacitance , Hydroxides/chemistry
7.
Life (Basel) ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35743905

ABSTRACT

In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.

8.
Front Psychol ; 12: 678979, 2021.
Article in English | MEDLINE | ID: mdl-34630200

ABSTRACT

The Fear of COVID-19 Scale (FCV-19S) is a new one-dimensional scale used to measure fear of an individual about the COVID-19. Given the seriousness of the COVID-19 situation in China when our study was taking place, our aim was to translate and examine the applicability of the FCV-19S in Chinese students. The sample used for validation comprised 2,445 Chinese students. The psychometrical characteristics of the Chinese FCV-19S (FCV-19S-C) were tested using Rasch analysis. Principal component analysis (PCA) proved the unidimensional structure of the model. Both infit and outfit mean square (MNSQ) values (0.69-1.31) and point-measure correlations (0.82-0.86) indicated a good model fit. Person-item separation and reliability values indicated good reliability of the scale. The person-item map revealed an acceptable level of match between the persons and the items. Differential item functioning of the FCV-19S-C showed no differences with respect to age or gender. FCV-19S-C scores were significantly associated with anxiety, stress, depression, ego-resilience, and general health. The FCV-19S-C was proven to be effective in measuring fear of Chinese students about the COVID-19.

9.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33932350

ABSTRACT

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Subject(s)
DNA Polymerase II/chemistry , Exonucleases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Amino Acid Substitution , Catalytic Domain , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA, Fungal/biosynthesis , DNA, Fungal/chemistry , DNA, Fungal/genetics , Exonucleases/genetics , Exonucleases/metabolism , Mutation, Missense , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
ACS Infect Dis ; 7(6): 1739-1751, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33826843

ABSTRACT

The unique ability of Mycobacterium tuberculosis (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes from the Cho-region (genomic locus responsible for cholesterol catabolism) of the Mtb genome, chsH3 (Rv3538) and chsB1 (Rv3502c). Their protein products catalyze two sequential stereospecific hydration and dehydrogenation steps in the ß-oxidation of the cholesterol side chain. ChsH3 favors the 22S hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA in contrast to the previously reported EchA19 (Rv3516), which catalyzes formation of the (22R)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes dehydrogenation of the ChsH3 product but not the EchA19 product. The X-ray crystallographic structure of the ChsB1 apo-protein was determined at a resolution of 2.03 Å, and the holo-enzyme with bound NAD+ cofactor was determined at a resolution of 2.21 Å. The homodimeric structure is representative of a classical NAD+-utilizing short-chain type alcohol dehydrogenase/reductase, including a Rossmann-fold motif, but exhibits a unique substrate binding site architecture that is of greater length and width than its homologous counterparts, likely to accommodate the bulky steroid substrate. Intriguingly, Mtb utilizes hydratases from the MaoC-like family in sterol side-chain catabolism in contrast to fatty acid ß-oxidation in other species that utilize the evolutionarily distinct crotonase family of hydratases.


Subject(s)
Mycobacterium tuberculosis , Cholesterol , Coenzyme A , Enoyl-CoA Hydratase/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Oxidation-Reduction
11.
J Lab Autom ; 21(1): 107-14, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26574563

ABSTRACT

Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.


Subject(s)
Automation, Laboratory/methods , Chemistry/methods , Crystallization/methods , Proteins/chemistry , Acoustics , Sepharose , Suspensions
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1177-89, 2014 May.
Article in English | MEDLINE | ID: mdl-24816088

ABSTRACT

Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.


Subject(s)
Acoustics , Crystallization/methods , Proteins/chemistry , Small Molecule Libraries , Acoustics/instrumentation , Crystallization/instrumentation , Crystallography, X-Ray , Drug Discovery , Equipment Design , Muramidase/chemistry , Thermolysin/chemistry , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...