Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Pharm Biomed Anal ; 245: 116197, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723558

ABSTRACT

The dysregulated levels of branched chain amino acids (BCAA) contribute to renal fibrosis in chronic kidney disease (CKD), yet specific analysis of BCAA contents and how they are regulated still remain unclear. It is therefore of great scientific interest to understand BCAA catabolism in CKD and develop a sensitive method for simultaneous determination of individual BCAA and their metabolites branched chain α-ketoacids (BCKA). In this work, the important role of BCAA metabolism that drives renal fibrosis in the process of CKD was first revealed by using transcriptomics. The key target genes controlling BCAA metabolism were then validated, that is, mRNA levels of BCKDHA and BCKDHB, the regulating rate-limiting enzymes during BCAA metabolism were abnormally reduced by quantitative PCR (qPCR), and a similar drop-off trend of protein expression of BCKDH, HIBCH and MCCC2 that are closely related to BCAA metabolism was also confirmed by western blotting. Furthermore, we established a novel strategy that simultaneously determines 6 individual BCAA and BCKA in serum and tissue. The method based on dansylhydrazine derivatization and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS) achieved to simultaneously determine the contents of BCAA and BCKA, which is efficient and stable. Compared with normal rats, levels of BCAA including leucine, isoleucine and valine in serum and kidney of CKD rats was decreased, while BCKA including α-ketoisocaproic acid, α-ketomethylvaleric acid and α-ketoisovaleric acid was increased. Together, these findings revealed the abnormality of BCAA metabolism in driving the course of kidney fibrosis and CKD. Our current study sheds new light on changes in BCAA metabolism during CKD, and may facilitate development of drugs to treat CKD and renal fibrosis.


Subject(s)
Amino Acids, Branched-Chain , Fibrosis , Kidney , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Animals , Amino Acids, Branched-Chain/metabolism , Rats , Male , Chromatography, High Pressure Liquid/methods , Fibrosis/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Kidney/metabolism , Kidney/pathology , Keto Acids/metabolism , Transcriptome , Tandem Mass Spectrometry/methods , Gene Expression Profiling/methods
2.
J Ethnopharmacol ; 329: 118130, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (Bu Gu Zhi) is the fruit of Psoralea corylifolia L. (PCL) and has been used for centuries in traditional Chinese medicine formulas to treat osteoporosis (OP). A new drug called "BX" has been developed from PCL, but its mechanism for treating OP is not yet fully understood. AIM OF THE STUDY: To explore the mechanism of action of BX in the treatment of ovariectomy-induced OP based function-oriented multi-omics analysis of gut microbiota (GM) and metabolites. MATERIALS AND METHODS: C57BL/6 mice were bilaterally ovariectomized to replicate the OP model. The therapeutic efficacy of BX was evaluated by bone parameters (BMD, BV/TV, Tb.N, Tb.Sp), hematoxylin and eosin (H&E) staining results, and determination of bone formation markers procollagen type Ⅰ amino-terminal peptide (PⅠNP) and bone-specific alkaline phosphatase (BALP). Serum and fecal metabolomics and high-throughput 16S rDNA sequencing were performed to evaluate effects on endogenous metabolites and GM. In addition, an enzyme-based functional correlation algorithm (EBFC) algorithm was used to investigate functional correlations between GM and metabolites. RESULTS: BX improved OP in OVX mice by increasing BMD, BV/TV, serum PⅠNP, BALP, and improving Tb.N and Tb.Sp. A total of 59 differential metabolites were identified, and 9 metabolic pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, purine metabolism, and tryptophan metabolism, were found to be involved in the progression of OP. EBFC analysis results revealed that the enzymes related to purine and tryptophan metabolism, which are from Lachnospiraceae_NK4A136_group, Blautia, Rs-E47_termite_group, UCG-009, and Clostridia_UCG-014, were identified as the intrinsic link between GM and metabolites. CONCLUSIONS: The regulation of GM and restoration of metabolic disorders may be the mechanisms of action of BX in alleviating OP. This research provides insights into the function-oriented mechanism discovery of traditional Chinese medicine in the treatment of OP.


Subject(s)
Coumarins , Gastrointestinal Microbiome , Mice, Inbred C57BL , Osteoporosis , Ovariectomy , Psoralea , Animals , Psoralea/chemistry , Female , Osteoporosis/drug therapy , Coumarins/pharmacology , Coumarins/isolation & purification , Coumarins/therapeutic use , Gastrointestinal Microbiome/drug effects , Mice , Bone Density/drug effects , Metabolomics , Disease Models, Animal , Fruit , Multiomics
3.
Asian J Androl ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319194

ABSTRACT

Ex vivo tissue culture of the human corpus cavernosum (CC) can be used to explore the tissue structural changes and complex signaling networks. At present, artificial CC-like tissues based on acellular or three-dimensional (3D)-printed scaffolds are used to solve the scarcity of primary penis tissue samples. However, inconvenience and high costs limit the wide application of such methods. Here, we describe a simple, fast, and economical method of constructing artificial CC-like tissue. Human CC fibroblasts (FBs), endothelial cells (ECs), and smooth muscle cells (SMCs) were expanded in vitro and mixed with Matrigel in specific proportions. A large number of bubbles were formed in the mixture by vortexing combined with pipette blowing, creating a porous, spongy, and spatial structure. The CC FBs produced a variety of signaling factors, showed multidirectional differentiation potential, and grew in a 3D grid in Matrigel, which is necessary for CC-like tissue to maintain a porous structure as a cell scaffold. Within the CC-like tissue, ECs covered the surface of the lumen, and SMCs were located inside the trabeculae, similar to the structure of the primary CC. Various cell components remained stable for 3 days in vitro, but the EC content decreased on the 7th day. Wingless/integrated (WNT) signaling activation led to lumen atrophy and increased tissue fibrosis in CC-like tissue, inducing the same changes in characteristics as in the primary CC. This study describes a preparation method for human artificial CC-like tissue that may provide an improved experimental platform for exploring the function and structure of the CC and conducting drug screening for erectile dysfunction therapy.

4.
Anal Chem ; 96(8): 3335-3344, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363654

ABSTRACT

Metabolomics has emerged as a powerful tool in biomedical research to understand the pathophysiological processes and metabolic biomarkers of diseases. Nevertheless, it is a significant challenge in metabolomics to identify the reliable core metabolites that are closely associated with the occurrence or progression of diseases. Here, we proposed a new research framework by integrating detection-based metabolomics with computational network biology for function-guided and network-based identification of core metabolites, namely, FNICM. The proposed FNICM methodology is successfully utilized to uncover ulcerative colitis (UC)-related core metabolites based on the significantly perturbed metabolic subnetwork. First, seed metabolites were screened out using prior biological knowledge and targeted metabolomics. Second, by leveraging network topology, the perturbations of the detected seed metabolites were propagated to other undetected ones. Ultimately, 35 core metabolites were identified by controllability analysis and were further hierarchized into six levels based on confidence level and their potential significance. The specificity and generalizability of the discovered core metabolites, used as UC's diagnostic markers, were further validated using published data sets of UC patients. More importantly, we demonstrated the broad applicability and practicality of the FNICM framework in different contexts by applying it to multiple clinical data sets, including inflammatory bowel disease, colorectal cancer, and acute coronary syndrome. In addition, FNICM was also demonstrated as a practicality methodology to identify core metabolites correlated with the therapeutic effects of Clematis saponins. Overall, the FNICM methodology is a new framework for identifying reliable core metabolites for disease diagnosis and drug treatment from a systemic and a holistic perspective.


Subject(s)
Colitis, Ulcerative , Metabolomics , Humans , Metabolomics/methods , Computational Biology/methods , Colitis, Ulcerative/diagnosis
5.
J Pharm Biomed Anal ; 241: 115973, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38237547

ABSTRACT

The integrated analysis of host metabolome and intestinal microbiome is an opportunity to explore the complex therapeutic mechanisms of traditional Chinese medicines. Currently, researchers mainly employ various statistical correlation analytical methods to investigate metabolome-microbiome correlations. However, these conventional correlation techniques often focus on statistical correlations and their biological meanings are always ignored, especially the functional relevance between them. Here, we developed a novel enzyme-based functional correlation (EBFC) algorithm to further improve the interpretability and the identified scope of microbe-metabolite correlations based on the conventional Spearman's analysis. The proposed EBFC algorithm is successfully utilized to reveal the therapeutic mechanisms of Jian-Pi-Yi-Shen (JPYS) formula on the treatment of adenine-induced chronic kidney disease (CKD) rats. JPYS, a TCM formula for treating CKD, has beneficial clinical effects. We tentatively revealed the potential mechanism of JPYS for treating CKD rats from the perspective of the serum metabolome, gut microbiome, and their interactions. Specifically, 11 metabolites and 19 bacterial genera in the CKD rats were significantly regulated to approaching normal status after JPYS treatment, suggesting that JPYS could ameliorate the pathological symptoms of CKD rats by reshaping the disturbed metabolome and gut microbiota. Further correlation analysis between the significantly perturbed metabolites, microbiota, and the related enzymes provided more strong evidence for the study of host metabolism-microbiota interactions and the therapeutic mechanism of JPYS on CKD rats. In conclusion, these findings will help us to deeply understand the pathogenesis of CKD and provide new insights into the therapeutic mechanism of JPYS.


Subject(s)
Drugs, Chinese Herbal , Renal Insufficiency, Chronic , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Multiomics , Medicine, Chinese Traditional/methods , Renal Insufficiency, Chronic/metabolism , Metabolome
6.
Cell Death Discov ; 9(1): 259, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491360

ABSTRACT

Cisplatin is an efficient chemotherapeutic agent for various solid tumors, but its usage is restricted by nephrotoxicity. A single dose of cisplatin can cause acute kidney injury (AKI), which is characterized by rapid reduction in kidney function. However, the current therapies, such as hydration, are limited. It is vital to develop novel therapeutic reagents that have both anticancer and renoprotective properties. The objective of this study was to determine whether ammonium tetrathiomolybdate (TM), a copper chelator used to treat cancer and disorders of copper metabolism, may offer protection against cisplatin-induced AKI. In this study, we demonstrated that TM treatment had antioxidative effects and mitigated cisplatin-induced AKI both in vivo and in vitro. Mechanically, TM inhibited NRF2 ubiquitination, which activated the NRF2 pathway in HK-2 cells and promoted the expression of target genes. It should be noted that the protective effect conferred by TM against cisplatin was compromised by the knockdown of the NRF2 gene. Furthermore, TM selectively activated the NRF2 pathways in the liver and kidney. The current study provided evidence for additional clinical applications of TM by showing that it activates NRF2 and has a favorable therapeutic impact on cisplatin-induced AKI.

7.
CNS Neurosci Ther ; 29(11): 3239-3258, 2023 11.
Article in English | MEDLINE | ID: mdl-37157936

ABSTRACT

OBJECTIVE: Clinical treatment of erectile dysfunction (ED) caused by cavernous nerve (CN) injury during pelvic surgery is difficult. Low-intensity pulsed ultrasound (LIPUS) can be a potential strategy for neurogenic ED (NED). However, whether Schwann cells (SCs) can respond to LIPUS stimulation signals is unclear. This study aims to elucidate the signal transmission between SCs paracrine exosome (Exo) and neurons stimulated by LIPUS, as well as to analyze the role and potential mechanisms of exosomes in CN repair after injury. METHODS: The major pelvic ganglion (MPG) neurons and MPG/CN explants were stimulated with LIPUS of different energy intensities to explore the appropriate LIPUS energy intensity. The exosomes were isolated and purified from LIPUS-stimulated SCs (LIPUS-SCs-Exo) and non-stimulated SCs (SCs-Exo). The effects of LIPUS-SCs-Exo on neurite outgrowth, erectile function, and cavernous penis histology were identified in bilateral cavernous nerve crush injury (BCNI)-induced ED rats. RESULTS: LIPUS-SCs-Exo group can enhance the axon elongation of MPG/CN and MPG neurons compared to SCs-Exo group in vitro. Then, the LIPUS-SCs-Exo group showed a stronger ability to promote the injured CN regeneration and SCs proliferation compared to the SCs-Exo group in vivo. Furthermore, the LIPUS-SCs-Exo group increased the Max intracavernous pressure (ICP)/mean arterial pressure (MAP), lumen to parenchyma and smooth muscle to collagen ratios compared to the SCs-Exo group in vivo. Additionally, high-throughput sequencing combined with bioinformatics analysis revealed the differential expression of 1689 miRNAs between the SCs-Exo group and the LIPUS-SCs-Exo group. After LIPUS-SCs-Exo treatment, the phosphorylated levels of Phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and forkhead box O (FoxO) in MPG neurons increased significantly compared to negative control (NC) and SCs-Exo groups. CONCLUSION: Our study revealed that LIPUS stimulation could regulate the gene of MPG neurons by changing miRNAs derived from SCs-Exo, then activating the PI3K-Akt-FoxO signal pathway to enhance nerve regeneration and restore erectile function. This study had important theoretical and practical significance for improving the NED treatment.


Subject(s)
Crush Injuries , Erectile Dysfunction , Exosomes , MicroRNAs , Peripheral Nerve Injuries , Ultrasonic Waves , Animals , Male , Rats , Crush Injuries/therapy , Crush Injuries/complications , Disease Models, Animal , Erectile Dysfunction/therapy , Erectile Dysfunction/drug therapy , Exosomes/metabolism , MicroRNAs/therapeutic use , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Schwann Cells/metabolism , Signal Transduction
8.
Front Endocrinol (Lausanne) ; 14: 1096723, 2023.
Article in English | MEDLINE | ID: mdl-36761198

ABSTRACT

Introduction: Cisplatin (cis-diamminedichloroplatinum II, CDDP), a drug widely used for cancer worldwide, may affect erectile function, but its side effects have not received enough attention. To investigate the effect of CDDP on erectile function and its possible mechanism. Methods: Sprague-Dawley rats were intraperitoneally administered CDDP (CDDP group) or the same volume of normal saline (control group). Erectile function was evaluated after a one-week washout. Then, histologic changes in the corpus cavernosum and cavernous nerve (CN) were measured. Other Sprague-Dawley rats were used to isolate the major pelvic ganglion and cavernous nerve (MPG/CN). RSC96 cells were then treated with CDDP. SA-ß-gal staining was used to identify senescent cells, and qPCR was used to detect the senescence-associated secretory phenotype (SASP). Finally, the supernatant of RSC96 cells was used to culture MPG/CN. Erectile function was measured after administration of CDDP. The cavernosum levels of α-SMA, CD31, eNOS, and γ-H2AX, the apoptosis rate and the expression of p16, p21 and p53 in CN were also assayed. The senescent phenotype of RSC96 cells treated with CDDP was identified, and neurite growth from the MPG/CN was photographed and measured. Results: The CDDP group had a significantly lower ICP/MAP ratio than the control group. Compared to the control group, the CDDP group exhibited significantly lower α-SMA, CD31 and eNOS levels and significantly higher γ-H2AX and apoptosis rates in corpus cavernosum. In addition, CDDP increased some senescence markers p16, p21 and p53 in CN. In vitro, CDDP induced RSC96 senescence and SASP, and the supernatant of senescent cells slowed neurite outgrowth of MPG/CN. Discussions: CDDP treatment could induce erectile dysfunction, by affecting the content of endothelial and smooth muscle and causing SASP in CN. The results indicate that CDDP treatment should be considered as a risk factor for ED. Clinicians should pay more attention to the erectile function of cancer patients who receive CDDP treatment.


Subject(s)
Cisplatin , Erectile Dysfunction , Animals , Male , Rats , Cisplatin/adverse effects , Erectile Dysfunction/chemically induced , Muscle, Smooth , Rats, Sprague-Dawley , Tumor Suppressor Protein p53
9.
Andrology ; 11(6): 1188-1202, 2023 09.
Article in English | MEDLINE | ID: mdl-36762774

ABSTRACT

BACKGROUND: Cavernous nerve injury-induced erectile dysfunction caused by pelvic surgery or trauma is refractory to conventional medications and required an alternative treatment. Low-intensity pulsed ultrasound is a noninvasive mechanical therapy that promotes nerve regeneration. OBJECTIVES: To investigate the therapeutic effect and potential mechanism of low-intensity pulsed ultrasound in the treatment of neurogenic erectile dysfunction. MATERIALS AND METHODS: Thirty rats were randomly divided into the sham-operated group, bilateral cavernous nerve injury group, and bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. The erectile function was assessed 3 weeks after daily low-intensity pulsed ultrasound treatment. The penile tissues and cavernous nerve tissues were harvested and subjected to histologic analysis. Primary Schwann cells and explants were extracted from adult rats. The effects of low-intensity pulsed ultrasound on proliferation, migration, and nerve growth factor expression of Schwann cells and axonal elongation were examined in vitro. RNA sequencing and western blot assay were applied to predict and verify the molecular mechanism of low-intensity pulsed ultrasound-induced Schwann cell activation. RESULTS: Our study showed that low-intensity pulsed ultrasound promoted Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. Meanwhile, low-intensity pulsed ultrasound exhibits a stronger ability to enhance Schwann cells-mediated neurite outgrowth of major pelvic ganglion neurons and major pelvic ganglion/cavernous nerve explants in vitro. In vivo experiments demonstrated that the erectile function of the rats in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group was significantly higher than those in the bilateral cavernous nerve injury groups. Moreover, the expression levels of smooth muscle and cavernous endothelium also increased significantly in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. In addition, we observed the higher density and number of cavernous nerve regenerating axons in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group, indicating that low-intensity pulsed ultrasound promotes axonal regeneration following cavernous nerve injury in vivo. RNA sequencing analysis and bioinformatic analysis suggested that low-intensity pulsed ultrasound might trigger the activation of the PI3K/Akt pathway. Western blot assay confirmed that low-intensity pulsed ultrasound activated Schwann cells through TrkB/Akt/CREB signaling. CONCLUSIONS: Low-intensity pulsed ultrasound promoted nerve regeneration and ameliorated erectile function by enhancing Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. The TrkB/Akt/CREB axis is the possible mechanism of low-intensity pulsed ultrasound-mediated Schwann cell activation. Low-intensity pulsed ultrasound-based therapy could be a novel potential treatment strategy for cavernous nerve injury-induced neurogenic erectile dysfunction.


Subject(s)
Erectile Dysfunction , Male , Humans , Rats , Animals , Erectile Dysfunction/therapy , Erectile Dysfunction/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Penile Erection , Penis/pathology , Schwann Cells/metabolism , Nerve Regeneration , Ultrasonic Waves , Disease Models, Animal
10.
Clin Exp Pharmacol Physiol ; 50(2): 140-148, 2023 02.
Article in English | MEDLINE | ID: mdl-36222180

ABSTRACT

Seminoma is the most common type of testicular germ cell tumour and is highly sensitive to cisplatin therapy, which has not been fully elucidated. In this study, we comprehensively monitored dynamic changes of TCam-2 cells after cisplatin treatment. At an early stage, we found that both low and high concentrations of cisplatin induced the S-phase arrest in TCam-2 cells. By contrast, the G0G1 arrest was caused by cisplatin in teratoma NTERA-2 cells. Afterwards, high concentrations of cisplatin promoted the extrinsic apoptosis and high expressions of related genes (Fas/FasL-caspase-8/-3) in TCam-2 cells. However, when decreasing the cisplatin, the apoptotic cells were significantly reduced, and accompanied by cells showing senescence-like morphology, positive SA-ß-gal staining and up-regulation of senescence-related genes (p53, p21 and p16). Furthermore, the cell cycle analysis revealed that most of the senescent TCam-2 cells were irreversibly arrested in the G2M phase. G2M arrest was also observed in NTERA-2 cells treated with a low concentration of cisplatin, while no senescence-related phenotype was discovered. In addition, we detected the γ-H2AX, a DNA damage marker protein, and reactive oxygen species (ROS) and found both of which were elevated with the increase of cisplatin in TCam-2 cells. In conclusion, the extrinsic apoptosis and senescence are involved in the growth kinetics of TCam-2 cells to cisplatin, which provide some implications for studies on cisplatin and seminoma.


Subject(s)
Seminoma , Testicular Neoplasms , Humans , Male , Cisplatin/pharmacology , Seminoma/drug therapy , Seminoma/genetics , Seminoma/metabolism , Testicular Neoplasms/drug therapy , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Signal Transduction , Apoptosis , Cell Line, Tumor , Cellular Senescence
11.
J Chromatogr A ; 1666: 462862, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35124358

ABSTRACT

Deep profiling of chemicalome in Chinese medicinal formulas is vital for disclosing the secret underlying their effectiveness. To address this issue, an in-house database-driven untargeted identification strategy was proposed with the use of ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry. Firstly, an in-house mass spectral database for the analyzed herbs was constructed, and database querying was performed for rapid recognition of known compounds. Secondly, a chemical diagnostic characteristics algorithm was originally developed for deep mining unrecorded ions, and thus expanding coverage of components beyond the database. Additionally, we proposed evaluation criteria for the untargeted identification of compounds with different confidence levels. As a case study, the integrated strategy was applied to comprehensively characterize complex multi-type components in Gegen-Qinlian Decoction. A total of 381 compounds were characterized and annotated with four different confidence levels, and 88.40% of these annotated compounds were successfully re-identified in triplicate analyses with a different instrument. The integrated strategy was demonstrated powerful in deep profiling of chemicalome in Chinese medicinal formulas with higher throughput, analytical sharpness, and lower omission ratios.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , China , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods
12.
Analyst ; 147(6): 1236-1244, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35225997

ABSTRACT

Collision cross section (CCS) values generated from ion mobility mass spectrometry (IM-MS) have commonly been employed to facilitate lipid identification. However, this is hindered by the limited available lipid standards. Recently, CCS values were predicted by means of computational calculations, though the prediction precision was generally not good and the predicted CCS values of the lipid isomers were almost identical. To address this challenge, a least absolute shrinkage and selection operator (LASSO)-based prediction method was developed for the prediction of lipids' CCS values in this study. In this method, an array of molecular descriptors were screened and optimized to reflect the subtle differences in structures among the different lipid isomers. The use of molecular descriptors together with a wealth of standard CCS values for the lipids (365 in total) significantly improved the accuracy and precision of the LASSO model. Its accuracy was externally validated with median relative errors (MREs) of <1.1% using an independent data set. This approach was demonstrated to allow differentiation of cis/trans and sn-positional isomers. The results also indicated that the LASSO-based prediction method could practically reduce false-positive identifications in IM-MS-based lipidomics.


Subject(s)
Ion Mobility Spectrometry , Lipidomics , Ion Mobility Spectrometry/methods , Isomerism , Lipids/analysis
13.
Sex Med ; 10(1): 100473, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34968812

ABSTRACT

INTRODUCTION: Before dapoxetine was approved for the treatment of lifelong premature ejaculation (LPE) in China, daily dosing with off-label sertraline was common. AIM: To investigate the efficacy of dapoxetine in the treatment of patients with LPE as an alternative to sertraline therapy. METHODS: This prospective study included LPE patients who previously attempted treatment with sertraline and who agree to receive dapoxetine therapy in our hospital from January 2020 to March 2021. Patients who received any PE therapy in the two months prior to the dapoxetine therapy were excluded. All patients received dapoxetine 30 mg (taken 1-3 hours before sexual intercourse) for 12 weeks, and they were not taking sertraline during the trial. MAIN OUTCOME MEASURE: Data on their intravaginal ejaculatory latency time and premature ejaculation profile were recorded before and after the dapoxetine treatment. Clinical Global Impression of Change scores and data on Treatment-Emergent adverse events were collected after treatment. RESULTS: A total of 144 patients with LPE completed this study; including 64 patients who reported that previous sertraline treatment was satisfactory (group A) and 80 patients for whom previous sertraline therapy was unsatisfactory in treating PE (group B). Both groups experienced significantly increased intravaginal ejaculatory latency time. Dapoxetine therapy was reported satisfactory by 67.5% of patients with LPE in whom sertraline therapy unsatisfactory according to their Clinical Global Impression of Change score, which was not different from those who reported this result in group A (62.5%). Similar outcomes were also reported for premature ejaculation profile and treatment-emergent adverse events. CONCLUSION: Although both dapoxetine and sertraline are selective serotonin re-uptake inhibitors, dapoxetine therapy is satisfactory in 67.5% of patients with LPE in whom sertraline treatment unsatisfactory, and the effect of dapoxetine was independent of the effect of sertraline. Liu G, Yin Y, Zhang L. et al., Efficacy of Dapoxetine in the Treatment of Patients With Lifelong Premature Ejaculation as an Alternative to Sertraline Therapy. Sex Med 2021;10:100473.

14.
Sex Med ; 10(1): 100455, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34818604

ABSTRACT

INTRODUCTION: Patients with erectile dysfunction induced by diabetes mellitus (DMED) show a poor effect rate for oral phosphodiesterase type 5 inhibitors (PDE5is). Therefore, the new therapeutic strategy is necessary in patients with DMED. AIM: To investigate whether Tetrathiomolybdate (TM) supplementation could ameliorate DMED by activation of eNOS. METHODS: Twenty-four diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) and the other 6 normal rats constituted the control group. Eight weeks later, the erectile function of rats was assessed with an apomorphine test. Only some rats with DMED were treated with TM orally every day for 4 weeks; the other rats remained in the same condition for 4 weeks. After 1 week washout, the erectile function of rats in each group was evaluated. Then, the serum concentration of IL-6 and histologic changes of corpus cavernosum were measured. MAIN OUTCOME MEASURE: Erectile function was measured after DMED rats treated with TM. The cavernosum level of Ceruloplasmin (Cp), eNOS, endothelial cell content, corporal fibrosis, apoptosis rate and the serum level of IL-6 were also assayed. RESULTS: Erectile function in the DMED group was significantly impaired compared with the control group and was partly, but significantly, improved in the DMED+TM group. The DMED group showed upregulation of Cp and inhibition of eNOS, but the inhibition was partly reversed in the DMED+TM group. The DMED group showed serious corporal fibrosis. However, TM supplementation partly increased the ratio of smooth muscle to collagen, decreased the ratio of apoptosis. What's more, gavage administration of TM profoundly decreased the serum level of IL-6 in DMED rats. CONCLUSION: TM supplementation inhibits endothelial dysfunction, corporal fibrosis, and systemic inflammation, ultimately leading to partial improvement of DMED in rats. Yin Y, Peng J, Zhou J, et al., Tetrathiomolybdate Partially Alleviates Erectile Dysfunction of Type 1 Diabetic Rats Through Affecting Ceruloplasmin/eNOS and Inhibiting Corporal Fibrosis and Systemic Inflammation. Sex Med 2022;10:100455.

15.
J Vis Exp ; (175)2021 09 20.
Article in English | MEDLINE | ID: mdl-34605805

ABSTRACT

The bilateral cavernous nerve (CN) injury rat model has been extensively used to simulate clinical cavernous nerve injury associated with erectile dysfunction (ED) for evaluating the effect of clinical therapeutic methods. However, the methods of CN injury model construction are flawed and varied in the ED research field. It is CN crush injury that is the most commonly used method in recent years. This study aims to provide a detailed description of the procedure of bilateral CN injury rat model construction and measurement of intracavernous pressure (ICP) recording, providing a reliable and reproducible CN injury rat model. This work successfully developed the CN injury method of hemostat crush injury using a syringe needle as hard support and a hemostat with a rubber sleeve. Also, this method concludes that a voltage of 1.0 V, frequency of 20 Hz, and pulse-width of 5 ms are the optimized stimulation parameters for ICP recording in a bilateral CN injury rat model.


Subject(s)
Erectile Dysfunction , Animals , Disease Models, Animal , Erectile Dysfunction/etiology , Humans , Male , Nerve Crush , Rats , Rats, Sprague-Dawley
16.
J Cell Mol Med ; 25(20): 9796-9804, 2021 10.
Article in English | MEDLINE | ID: mdl-34545676

ABSTRACT

This study aimed to explore the possibility of miR-423-5p modified adipose-derived stem cell (ADSCs) therapy on streptozotocin (STZ)-induced diabetes mellitus erectile dysfunction (DMED) rats. MiR-423-5p was knocked down in ADSCs. ADSCs, NC-miR-ADSCs and miR-ADSCs were co-cultured with human umbilical vein endothelial cells (HUVECs). Normal and high glucose media were supplemented. The supernatant and HUVECs were collected for assessment of eNOS and VEGFa expression, cell proliferation, and apoptosis. HUVECs co-cultured with ADSCs or miR-ADSCs exhibited higher eNOS and VEGFa protein expression levels compared to DM groups. MiR-ADSCs enhanced HUVEC proliferation compared to the ADSCs and NC-miR-ADSCs. Lower apoptotic rates were observed when HUVECs were co-cultured with miR-ADSCs, compared to ADSCs and NC-miR-ADSCs. Fifteen male Sprague-Dawley (SD) rats aged 12 weeks were induced to develop diabetes mellitus by intraperitoneal injection with STZ, and five healthy SD rats were used as normal controls. Eight weeks after developing diabetes, the rats received ADSCs and miR-ADSCs via injection into the corpora cavernosa, whereas normal controls and DM controls were injected with saline. Erectile function and histological assessment of penile tissues were performed 8 weeks after injection. The ICP/MAP indicated that erectile function was impaired in the DM rats compared with the normal group. Injection of ADSCs and miR-ADSCs improved erectile function significantly and was associated with the overexpression of eNOS and VEGFa. MiR-423-5p knockdown in ADSCs ameliorated high glucose-mediated damage to HUVECs and improved erectile function in DM rats by inducing eNOS and VEGFa overexpression, indicating that miR-423-5p may be a potential target in the treatment of DMED.


Subject(s)
Adipose Tissue/cytology , Erectile Dysfunction/etiology , Erectile Dysfunction/metabolism , MicroRNAs/genetics , Nitric Oxide Synthase Type III/metabolism , Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Apoptosis/genetics , Biomarkers , Cell Line , Diabetes Mellitus, Experimental , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Male , RNA Interference , Rats , Signal Transduction , Stem Cells/cytology
17.
Transl Androl Urol ; 10(4): 1711-1722, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33968659

ABSTRACT

BACKGROUND: Our previous work shows Autophagy enhanced resistance to cisplatin in seminoma. The expression of the N6-methyladenosine (m6A) methyltransferases METTL3 was significantly increased in the cisplatin-resistant TCam-2 cell line of seminoma. We aimed to investigate the role of m6A methylation in autophagy and the chemosensitivity of seminoma cells. METHODS: Plasmid and siRNA were used to overexpress and knockdown METTL3. Autophagy was detected by western blot and immunofluorescence, respectively. The expression of downstream targets of METTL3 was detected by quantitative real-time PCR (qRT-PCR) and western blot, and the m6A level of them was detected by MeRIP-qPCR. Chemosensitivity of the TCam-2 cell line was identified through MTT assay. RESULTS: Upon METTL3 overexpression, autophagy of TCam-2 cell line was enhanced and its sensitivity to cisplatin was decreased. The use of autophagy inhibitors 3-methyladenine (3-MA) could reverse the protective effect of METTL3 on TCam-2 cells. We found that the up-regulation of METTL3 could increase the m6A modification level of ATG5 transcript, thus increased expression of ATG5. Moreover, knockdown of ATG5 reduced METTL3-induced autophagy, suggesting that ATG5 was a potential target for METTL3 to promote autophagy. CONCLUSIONS: In summary, our research unveiled the unique mechanism by which m6A methylation regulates autophagy and chemosensitivity of the TCam-2 cell line and METTL3 was a potential target to overcome the cisplatin resistance of seminoma.

18.
Phytochem Anal ; 32(2): 124-128, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31359524

ABSTRACT

INTRODUCTION: Traditional methods to derive experimentally-generated relative correction factors (RCFs) for the quantitative analysis of herbal multi-components by single marker (QAMS) method require reference standards and multiple validations with different instruments and columns, which hampers high throughput implementation. OBJECTIVES: To effectively reduce the application amounts of raw material and provide higher and more stable accuracy, this study aimed to develop a method to computationally generate RCFs of herbal components. MATERIALS AND METHODS: This strategy included the published data collection, calibration curves screening, computer algorithm-based RCFs generation and accuracy validation. RESULTS: Using the in silico approach, we have successfully produced 133 RCFs for the multi-component quantitative analysis of 63 widely used herbs. CONCLUSION: Compared with conventional RCFs, this in silico method would be a low cost and highly efficient way to produce practical RCFs for the QAMS method.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid , Computer Simulation
19.
J Cell Mol Med ; 24(19): 11366-11380, 2020 10.
Article in English | MEDLINE | ID: mdl-32857912

ABSTRACT

Testicular germ cell tumours (TGCTs) rank as the most common malignancy in men aged 20-34 years, and seminomas are the most type of TGCTs. As a crucial anti-tumour agent with explicit toxicity, cisplatin may render resistance through intertwined mechanisms, even in disease entities with high curative ratio, such as seminoma. Previously, we established cisplatin-resistant seminoma TCam-2 (TCam-2/CDDP) cells and showed that epigenetic regulations, such as non-coding RNA (ncRNA) interactions, might orchestrate cell fate decisions in the cisplatin treatment context in seminoma. N6-methyladenosine (m6A) is the most prevalent internal modification in mRNA. In the present study, we assessed cisplatin resistance in seminoma from the perspective of m6 A, another manner of epigenetic modification. The global m6 A enrichment of TCam-2 and TCam-2/CDDP was depicted. Then, we elucidated whether transcription factor-activating enhancer-binding protein 2C (TFAP2C) was functionally m6 A-modified by methyltransferase-like protein 3 (METTL3), which acted as an m6 A 'writer', and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which acted as an m6 A 'reader'. Enhanced stability of TFAP2C mRNA promoted seminoma cell survival under cisplatin treatment burden probably through up-regulation of DNA repair-related genes. Hopefully, this study will help improve our understanding of the subtleties of the tumour cellular coping strategy in response to chemotherapy. Targeting factors that are involved in m6 A methylation may be an effective strategy for circumventing cisplatin resistance in seminoma.


Subject(s)
Adenosine/analogs & derivatives , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Methyltransferases/metabolism , Seminoma/metabolism , Testicular Neoplasms/metabolism , Transcription Factor AP-2/metabolism , Adenosine/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , DNA Repair/drug effects , DNA Repair/genetics , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Methylation , Mice, Inbred BALB C , Mice, Nude , Protein Binding/drug effects , RNA Stability/drug effects , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Seminoma/genetics , Seminoma/pathology , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Transcription Factor AP-2/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
20.
Front Genet ; 11: 176, 2020.
Article in English | MEDLINE | ID: mdl-32180804

ABSTRACT

MicroRNA (miRNA)-gene interactions are well-recognized as involved in the progression of almost all cancer types including prostate cancer, which is one of the most common cancers in men. This study explored the significantly dysregulated genes and miRNAs and elucidated the potential miRNA-gene regulatory network in prostate cancer. Integrative analysis of prostate cancer and normal prostate transcriptomic data in The Cancer Genome Atlas dataset was conducted using both differential expression analysis and weighted correlation network analysis (WGCNA). Thirteen genes (RRM2, ORC6, CDC45, CDKN2A, E2F2, MYBL2, CCNB2, PLK1, FOXM1, CDC25C, PKMYT1, GTSE1, and CDC20) were potentially correlated with prostate cancer based on functional enrichment analyses. MiRNAs targeting these genes were predicted and eight miRNAs were intersections between those miRNAs and the hub miRNAs obtained from miRNA WGCNA analysis. Three genes (E2F2, RRM2, and PKMYT1) and four miRNAs (hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-92a-3p, and hsa-mir-93-5p) were key factors according to the interaction network. RRM2 and PKMYT1 were significantly related to survival. These findings partially elucidated the dysregulation of gene expressions in prostate cancer. Efficient manipulations of the miRNA-gene interactions in prostate cancer may be exploited as promising therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...