Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Article in English | MEDLINE | ID: mdl-38997600

ABSTRACT

The urban heat island (UHI) effect generated by the development of high-speed urbanization has become one of the major problems affecting the urban ecological environment. As the main body of urbanization in China, China's urban agglomerations are the core areas of urban heat island effect. The purpose of this study is to study the spatial-temporal characteristics and driving factors of surface urban heat island in 19 urban agglomerations in China, with a view to providing theoretical references for the prevention of urban thermal environmental risks. Based on Google Earth Engine (GEE), this paper estimated the surface urban heat island intensity (SUHII) of 19 urban agglomerations in China from 2003 to 2019 using MODIS land surface temperature (LST) data. Correlation analysis and regression analysis were used to explore the correlation between the change of SUHII and driving factors. Finally, the driving factors of SUHII were detected by the geo-detector model. Results showed that (1) the SUHII of 19 urban agglomerations in arid and semi-arid areas of northwestern China is higher than that in humid areas of eastern and southeastern China. (2) The SUHII of 19 urban agglomerations in China generally shows a decreasing trend, and the spatial variation of the change trend is significant. (3) There are positive correlations between SUHII and reference evapotranspiration (ET0), population density (POP), gross domestic product (GDP), nitrogen dioxide (NO2), ozone (O3), and ultraviolet aerosol index (UVAI); negative correlations with normalized difference vegetation index (NDVI), DEM, sulfur dioxide (SO2), carbon monoxide (CO), and formaldehyde (HCHO); the correlations all pass the significance test of P < 0.05 and are statistically significant. (4) The factor detection results showed that NDVI, land cover type (LC), and UVAI were the main driving factors of SUHII. The interaction detection results showed that the interaction between O3 and UVAI had the most significant impact on SUHII.

2.
Int J Biol Macromol ; : 133728, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019700

ABSTRACT

Passive radiative cooling material of cellulose by coupling inorganic nanoparticles, have demonstrated competitive advantages in sustainably cooling buildings and constructions due to their voluminous availability, biodegradability, renewability, and natural origin. However, the weak stability of cellulose-inorganic nanoparticle materials when exposed to water or external forces remains a significant challenge that impedes their practical application. In this study, we proposed an easy-to-prepare, scalable, and robust cooling cellulose composite by coupling nano-SiO2 and cellulose acetate (CA) within cellulose fibers, using the mature pulping and paper process (filling of inorganic particles of nano-SiO2 and subsequent sizing of polymer of CA). More importantly, the CA molecules form the strong bonding with the cellulose molecules due to the high similarity of their molecular structure, which makes CA function as a "glue" to effectively fasten nano-SiO2 on the cellulose fibers. Correspondingly, our cellulose composite features desirable robustness and structural stability even undergoing mechanical beating and water-soaking treatments, demonstrating its excellent robustness and desirable adaptability to natural environments, such as wind and rain. As a result, despite undergoing water-soaking (for 40 days) or environmental exposure (for 90 days), the cooling cellulose composite still exhibits excellent solar reflectance (>95 %) and infrared thermal emissivity (>0.95 at 8-13 µm), enabling sub-ambient temperature (∼6.5 °C during daytime and ∼8 °C at nighttime) throughout the day. Our cooling cellulose composite demonstrates promising potential as an environmentally friendly, low-cost, and stable cooling material in our low-carbon society.

3.
Nat Commun ; 15(1): 3789, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710693

ABSTRACT

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Subject(s)
Amino Acid Motifs , Cryoelectron Microscopy , Cullin Proteins , Receptors, Interleukin-17 , Ubiquitin-Protein Ligases , Ubiquitination , Cullin Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Protein Multimerization , Conserved Sequence , Protein Binding , Models, Molecular
4.
Nat Chem Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773328

ABSTRACT

A timely inflammatory response is crucial for early viral defense, but uncontrolled inflammation harms the host. Retinoic acid-inducible gene I (RIG-I) has a pivotal role in detecting RNA viruses, yet the regulatory mechanisms governing its sensitivity remain elusive. Here we identify PTENα, an N-terminally extended form of PTEN, as an RNA-binding protein with a preference for the CAUC(G/U)UCAU motif. Using both in vivo and in vitro viral infection assays, we demonstrated that PTENα restricted the host innate immune response, relying on its RNA-binding capacity and phosphatase activity. Mechanistically, PTENα directly bound to viral RNA and enzymatically converted its 5'-triphosphate to 5'-monophosphate, thereby reducing RIG-I sensitivity. Physiologically, brain-intrinsic PTENα exerted protective effects against viral inflammation, while peripheral PTENα restricted host antiviral immunity and, to some extent, promoted viral replication. Collectively, our findings underscore the significance of PTENα in modulating viral RNA- and RIG-I-mediated immune recognition, offering potential therapeutic implications for infectious diseases.

5.
BMC Infect Dis ; 24(1): 427, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649864

ABSTRACT

BACKGROUND: COVID-19 has been shown to increase the risk of extracorporeal coagulation during hemodialysis in patients, but the underlying mechanism remains unclear. This study aimed to investigate the effect and mechanism of COVID-19 on the risk of extracorporeal coagulation in patients with chronic kidney disease undergoing hemodialysis. METHODS: A retrospective analysis of the extracorporeal coagulation status of 339 hemodialysis patients at our center before and after COVID-19 infection was performed, including subgroup analyses. Post-infection blood composition was analyzed by protein spectrometry and ELISA. RESULTS: Compared to the pre-COVID-19 infection period, COVID-19-induced extracorporeal coagulation predominantly occurred in patients with severe/critical symptoms. Further proteomic analysis demonstrated that in patients with severe/critical symptoms, the coagulation cascade reaction, platelet activation, inflammation, and oxidative stress-related pathways were significantly amplified compared to those in patients with no/mild symptoms. Notably, the vWF/FBLN5 pathway, which is associated with inflammation, vascular injury, and coagulation, was significantly upregulated. CONCLUSIONS: Patients with severe/critical COVID-19 symptoms are at a higher risk of extracorporeal coagulation during hemodialysis, which is associated with the upregulation of the vWF/FBLN5 signaling pathway. These findings highlight the importance of early anticoagulant therapy initiation in COVID-19 patients with severe/critical symptoms, particularly those undergoing hemodialysis. Additionally, vWF/FBLN5 upregulation may be a novel mechanism for virus-associated thrombosis/coagulation.


Subject(s)
COVID-19 , Renal Dialysis , SARS-CoV-2 , Signal Transduction , Up-Regulation , von Willebrand Factor , Humans , COVID-19/blood , COVID-19/metabolism , Renal Dialysis/adverse effects , Male , Female , Middle Aged , Retrospective Studies , von Willebrand Factor/metabolism , von Willebrand Factor/analysis , Aged , Blood Coagulation , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/blood , Adult
6.
J Proteome Res ; 23(5): 1788-1800, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38619924

ABSTRACT

As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.


Subject(s)
Aging , Insulin-Like Growth Factor I , Platelet-Rich Plasma , Proteomics , Humans , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry , Proteomics/methods , Aged , Adult , Insulin-Like Growth Factor I/metabolism , Male , Female , Proteome/analysis , Proteome/metabolism , Young Adult , Up-Regulation , Apoptosis , Age Factors
7.
Adv Sci (Weinh) ; 11(16): e2304501, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38386350

ABSTRACT

CD8+ T cells are critical for host antitumor responses, whereas persistent antigenic stimulation and excessive inflammatory signals lead to T cell dysfunction or exhaustion. Increasing early memory T cells can improve T cell persistence and empower T cell-mediated tumor eradication, especially for adoptive cancer immunotherapy. Here, it is reported that tumor-associated monocytes (TAMos) are highly correlated with the accumulation of CD8+ memory T cells in human cancers. Further analysis identifies that TAMos selectively reprogram CD8+ T cells into T central memory-like (TCM-like) cells with enhanced recall responses. L-NMMA, a pan nitric oxide synthase inhibitor, can mitigate TAMo-mediated inhibition of T cell proliferation without affecting TCM-like cell generation. Moreover, the modified T cells by TAMo exposure and L-NMMA treatment exhibit long-term persistence and elicit superior antitumor effects in vivo. Mechanistically, the transmembrane protein CD300LG is involved in TAMo-mediated TCM-like cell polarization in a cell-cell contact-dependent manner. Thus, the terminally differentiated TAMo subset (CD300LGhighACElow) mainly contributes to TCM-like cell development. Taken together, these findings establish the significance of TAMos in boosting T-cell antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Monocytes , CD8-Positive T-Lymphocytes/immunology , Mice , Animals , Monocytes/immunology , Humans , Memory T Cells/immunology , Immunologic Memory/immunology , Disease Models, Animal , Neoplasms/immunology , Neoplasms/therapy , Mice, Inbred C57BL , Cell Line, Tumor , Immunotherapy, Adoptive/methods
8.
EMBO J ; 43(6): 1089-1109, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360992

ABSTRACT

Cullin-RING E3 ubiquitin ligase (CRL) family members play critical roles in numerous biological processes and diseases including cancer and Alzheimer's disease. Oligomerization of CRLs has been reported to be crucial for the regulation of their activities. However, the structural basis for its regulation and mechanism of its oligomerization are not fully known. Here, we present cryo-EM structures of oligomeric CRL2FEM1B in its unneddylated state, neddylated state in complex with BEX2 as well as neddylated state in complex with FNIP1/FLCN. These structures reveal that asymmetric dimerization of N8-CRL2FEM1B is critical for the ubiquitylation of BEX2 while FNIP1/FLCN is ubiquitylated by monomeric CRL2FEM1B. Our data present an example of the asymmetric homo-dimerization of CRL. Taken together, this study sheds light on the ubiquitylation strategy of oligomeric CRL2FEM1B according to substrates with different scales.


Subject(s)
Ubiquitin-Protein Ligases , Humans , Cullin Proteins/metabolism , Neoplasms/metabolism , Nerve Tissue Proteins , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
J Genet Genomics ; 51(5): 531-542, 2024 May.
Article in English | MEDLINE | ID: mdl-38184105

ABSTRACT

Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.


Subject(s)
Energy Metabolism , Mitochondria , PTEN Phosphohydrolase , RNA, Circular , RNA-Binding Proteins , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Mitochondria/genetics , Mitochondria/metabolism , Energy Metabolism/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Membrane Potential, Mitochondrial/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Adenosine Triphosphate/metabolism , HEK293 Cells , Neoplasm Proteins
10.
Nat Commun ; 15(1): 759, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38272905

ABSTRACT

Anion exchanger 2 (AE2) is an electroneutral Na+-independent Cl-/HCO3- exchanger belongs to the SLC4 transporter family. The widely expressed AE2 participates in a variety of physiological processes, including transepithelial acid-base secretion and osteoclastogenesis. Both the transmembrane domains (TMDs) and the N-terminal cytoplasmic domain (NTD) are involved in regulation of AE2 activity. However, the regulatory mechanism remains unclear. Here, we report a 3.2 Å cryo-EM structure of the AE2 TMDs in complex with PIP2 and a 3.3 Å full-length mutant AE2 structure in the resting state without PIP2. We demonstrate that PIP2 at the TMD dimer interface is involved in the substrate exchange process. Mutation in the PIP2 binding site leads to the displacement of TM7 and further stabilizes the interaction between the TMD and the NTD. Reduced substrate transport activity and conformation similar to AE2 in acidic pH indicating the central contribution of PIP2 to the function of AE2.


Subject(s)
Antiporters , Lipids , Humans , Chloride-Bicarbonate Antiporters/genetics , Antiporters/genetics , SLC4A Proteins , Mutation , Anion Transport Proteins/metabolism , Hydrogen-Ion Concentration
11.
Bioorg Chem ; 144: 107134, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237389

ABSTRACT

Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 µM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 µM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Focal Adhesion Protein-Tyrosine Kinases , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Sulfonamides/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology
12.
Sensors (Basel) ; 23(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139547

ABSTRACT

In this paper, we utilize micro-computed tomography (micro-CT) to obtain micro-CT images with a resolution of 60 µm and establish a micro-CT model based on the k-wave toolbox, which can visualize the microstructures in trabecular bone, including pores and bone layers. The transcranial ultrasound phased array focusing field characteristics in the micro-CT model are investigated. The ultrasonic waves are multiply scattered in skull and time delays calculations from the transducer to the focusing point are difficult. For this reason, we adopt the pulse compression method and the linear frequency modulation Barker code to compute the time delay and implement phased array focusing in the micro-CT model. It is shown by the simulation results that ultrasonic loss is mainly caused by scattering from the microstructures of the trabecular bone. The ratio of main and side lobes of the cross-correlation calculation is improved by 5.53 dB using the pulse compression method. The focusing quality and the calculation accuracy of time delay are improved. Meanwhile, the beamwidth at the focal point and the sound pressure amplitude decrease with the increase in the signal frequency. Focusing at different depths indicates that the beamwidth broadens with the increase in the focusing depth, and beam deflection focusing maintains good consistency in the focusing effect at a distance of 9 mm from the focal point. This indicates that the phased-array method has good focusing results and focus tunability in deep cranial brain. In addition, the sound pressure at the focal point can be increased by 8.2% through amplitude regulation, thereby enhancing focusing efficiency. The preliminary experiment verification is conducted with an ex vivo skull. It is shown by the experimental results that the phased array focusing method using pulse compression to calculate the time delay can significantly improve the sound field focusing effect and is a very effective transcranial ultrasound focusing method.


Subject(s)
Brain , Ultrasonics , X-Ray Microtomography , Ultrasonography , Brain/diagnostic imaging , Skull/diagnostic imaging
13.
Cell Rep ; 42(11): 113388, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37934668

ABSTRACT

Cancer evades host immune surveillance by virtue of poor immunogenicity. Here, we report an immune suppressor, designated as PTIR1, that acts as a promotor of tumor immune resistance. PTIR1 is selectively induced in human cancers via alternative splicing of DDX58 (RIG-I), and its induction is closely related to poor outcome in patients with cancer. Through blocking the recruitment of leukocytes, PTIR1 facilitates cancer immune escape and tumor-intrinsic resistance to immunotherapeutic treatments. Unlike RIG-I, PTIR1 is capable of binding to the C terminus of UCHL5 and activates its ubiquitinating function, which in turn inhibits immunoproteasome activity and limits neoantigen processing and presentation, consequently blocking T cell recognition and attack against cancer. Moreover, we find that the adenosine deaminase ADAR1 induces A-to-I RNA editing on DDX58 transcript, thus triggering PTIR1 production. Collectively, our data uncover the immunosuppressive role of PTIR1 in tumorigenesis and propose that ADAR1-PTIR1-UCHL5 signaling is a potential cancer immunotherapeutic target.


Subject(s)
Cell Communication , Signal Transduction , Humans , Carcinogenesis/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , DEAD Box Protein 58/metabolism , Receptors, Immunologic , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
14.
World J Urol ; 41(12): 3671-3678, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37921934

ABSTRACT

OBJECTIVE: Visceral adipose index (VAI) is a novel parameter for the evaluation of visceral obesity. The present study aimed to investigate the association between VAI levels and stress urinary incontinence (SUI) in a nationally representative population. MATERIALS AND METHODS: The National Health and Nutrition Examination Survey (NHANES) women population aged > 20 years were analyzed from 2001 to 2018. SUI was determined by self-reported questions. VAI was calculated using physical examination data and laboratory tests. Survey-weighted logistic regression models were used to analyze the correlation between SUI and VAI. RESULTS: The final analysis included 9709 women. Among them, 4032 (41.53%) were any SUI, 1130 (11.64%) were at least weekly SUI, and 506 (5.21%) were at least daily SUI. In multivariate analysis, the odds ratio (OR) for overall SUI increased slightly after full adjustment (OR 1.06, 95% CI 1.03-1.10, P = 0.001). Similar results were observed in weekly (OR 1.04, 95% CI 1.00-1.08, P = 0.0327) and daily (OR 1.04, 95% CI 1.00-1.09, P = 0.0702) SUI. The analysis of VAI categorized showed an increased OR of any, weekly, and daily SUI in the highest compared to the lowest tertile (OR 1.44, 95% CI 1.26-1.65, P < 0.0001 for trend, OR 1.38, 95% CI 1.07-1.78, P = 0.0153 for trend, OR 1.33, 95% CI 0.94-1.87, P = 0.094 for trend). CONCLUSION: This study revealed a significant association between SUI and VAI among US adult women. VAI is an easily applicable index for the evaluation of visceral fat dysfunction, which might be useful for the calculation of SUI risk.


Subject(s)
Obesity, Abdominal , Urinary Incontinence, Stress , Humans , Adult , Female , Cross-Sectional Studies , Nutrition Surveys , Obesity, Abdominal/complications , Obesity, Abdominal/epidemiology , Urinary Incontinence, Stress/epidemiology , Intra-Abdominal Fat/diagnostic imaging , Risk Factors
15.
Nat Commun ; 14(1): 6157, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788993

ABSTRACT

BTR1 (SLC4A11) is a NH3 stimulated H+ (OH-) transporter belonging to the SLC4 family. Dysfunction of BTR1 leads to diseases such as congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy (FECD). However, the mechanistic basis of BTR1 activation by alkaline pH, transport activity regulation and pathogenic mutations remains elusive. Here, we present cryo-EM structures of human BTR1 in the outward-facing state in complex with its activating ligands PIP2 and the inward-facing state with the pathogenic R125H mutation. We reveal that PIP2 binds at the interface between the transmembrane domain and the N-terminal cytosolic domain of BTR1. Disruption of either the PIP2 binding site or protonation of PIP2 phosphate groups by acidic pH can transform BTR1 into an inward-facing conformation. Our results provide insights into the mechanisms of how the transport activity and conformation changes of BTR1 are regulated by PIP2 binding and interaction of TMD and NTD.


Subject(s)
Corneal Dystrophies, Hereditary , Fuchs' Endothelial Dystrophy , Humans , Antiporters/genetics , Fuchs' Endothelial Dystrophy/genetics , Corneal Dystrophies, Hereditary/pathology , Mutation , Protein Domains , Anion Transport Proteins/metabolism
16.
Cell Death Dis ; 14(10): 680, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833251

ABSTRACT

Nephrolithiasis is highly prevalent and associated with the increased risk of kidney cancer. The tumor suppressor von Hippel-Lindau (VHL) is critical for renal cancer development, however, its role in kidney stone disease has not been fully elucidated until now. Here we reported VHL expression was upregulated in renal epithelial cells upon exposure to crystal. Utilizing Vhl+/mu mouse model, depletion of VHL exacerbated kidney inflammatory injury during nephrolithiasis. Conversely, overexpression of VHL limited crystal-induced lipid peroxidation and ferroptosis in a BICD2-depdendent manner. Mechanistically, VHL interacted with the cargo adaptor BICD2 and promoted itsd K48-linked poly-ubiquitination, consequently resulting in the proteasomal degradation of BICD2. Through promoting STAT1 nuclear translocation, BICD2 facilitated IFNγ signaling transduction and enhanced IFNγ-mediated suppression of cystine/glutamate antiporter system Xc-, eventually increasing cell sensitivity to ferroptosis. Moreover, we found that the BRAF inhibitor impaired the association of VHL with BICD2 through triggering BICD2 phosphorylation, ultimately causing severe ferroptosis and nephrotoxicity. Collectively, our results uncover the important role of VHL/BICD2/STAT1 axis in crystal kidney injury and provide a potential therapeutic target for treatment and prevention of renal inflammation and drug-induced nephrotoxicity.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Nephrolithiasis , Animals , Mice , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Kidney/pathology , Kidney Neoplasms/metabolism , Carcinoma, Renal Cell/metabolism , Nephrolithiasis/metabolism
17.
J Mol Biol ; 435(19): 168243, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37619706

ABSTRACT

The Eph (erythropoietin-producing human hepatocellular) receptor family, the largest subclass of receptor tyrosine kinases (RTKs), plays essential roles in embryonic development and neurogenesis. The intracellular Sterile Alpha Motif (SAM) domain presents a critical structural feature that distinguishes Eph receptors from other RTKs and participates in recruiting and binding downstream molecules. This study identified SASH1 (SAM and SH3 domain containing 1) as a novel Eph receptor-binding partner through SAM-SAM domain interactions. Our comprehensive biochemical analyses revealed that SASH1 selectively interacts with Eph receptors via its SAM1 domain, displaying the highest affinity for EphA8. The high-resolution crystal structure of the EphA8-SASH1 complex provided insights into the specific intermolecular interactions between these proteins. Cellular assays confirmed that EphA8 and SASH1 co-localize and co-precipitate in mammalian cells, with cancer mutations (EphA8 R942H or G978D) impairing this interaction. We demonstrated that SAM-SAM interaction is critical for SASH1-mediated regulation of EphA8 kinase activity, shedding new light on the Eph signaling pathway and expanding our understanding of the molecular basis of the tumor suppressor gene SASH1.


Subject(s)
Receptor, EphA1 , Sterile Alpha Motif , Tumor Suppressor Proteins , Animals , Female , Humans , Pregnancy , Embryonic Development , Receptor, EphA1/genetics , Receptors, Eph Family/genetics , Signal Transduction
18.
Int J Nurs Sci ; 10(3): 345-350, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37545774

ABSTRACT

Objectives: This study aimed to establish and implement an interdisciplinary management strategy led by senior nurses via a vascular access specialist team (VAST) at a teaching hospital. Methods: In 2021, the hospital established and implemented a nurse-led VAST management strategy to improve the quality of clinical central line maintenance. The VAST comprised senior nurses specialized in intravenous therapy, ultrasound/radiology technologists, medical doctors with central venous catheterization certificates, central line maintenance nurses, and administrative coordinators. The management strategy mainly included systemic on-the-job training for VAST members, the establishment of an interdisciplinary central line emergency "green channel," the formation of a VAST-based, nurse-led standardized clinical rounding system, and the standardization of central line self-care instructions for patients. During the pre- (July 2020 to April 2021) and post- (May 2021 to May 2022) of the implementation the interdisciplinary management strategy, overall patients' self-care ability, the success rate of catheterization at first time, central line management compliance rate, and patients' satisfaction with catheter maintenance were investigated and compared. Results: The results showed the score self-care ability was increased from 74.75 ± 18.4 (pre-VAST) to 99.10 ± 23.65 (post- VAST); the success rate for catheterization at first time was improved to 100% (225/225), compared to 92.9% (209/225) at pre-VAST; the central line management compliance rate was also increased to 99.6% (224/225) at post-VAST from 93.3% (210/225) at pre-VAST. A patient satisfaction survey on catheter maintenance showed improvements in all five indicators were compared to the pre- VAST (P < 0.05). Conclusions: The nurse-led VAST interdisciplinary strategy can effectively improve the quality of clinical central line management and should be used to reinforce clinical catheterization and maintenance of central lines.

19.
Anal Chem ; 95(29): 10859-10863, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428854

ABSTRACT

As the first step of metabolomic analysis in biomarker identification studies, various types of blood collection tubes are used in clinical practice. However, little attention is paid to potential contamination caused by the blank tube itself. Here, we evaluated small molecules in blank EDTA plasma tubes through LC-MS-based untargeted metabolomic analysis and identified small molecules with markedly varied levels among different production batches or specifications. Our data demonstrate possible contamination and data interference caused by blank EDTA plasma tubes when employing large clinical cohorts for biomarker identification. Therefore, we propose a workflow of filtering metabolites in blank tubes prior to statistical analysis to improve the fidelity of biomarker identification.


Subject(s)
Metabolomics , Plasma , Edetic Acid , Workflow , Blood Specimen Collection , Biomarkers
20.
iScience ; 26(8): 107367, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520707

ABSTRACT

Immune checkpoint blockade has become an effective approach to reverse the immune tolerance of tumor cells. Indoleamine 2,3-dioxygenase 1 (IDO1) is frequently upregulated in many types of cancers and contributes to the establishment of an immunosuppressive cancer microenvironment, which has been thought to be a potential target for cancer therapy. However, the development of IDO1 inhibitors for clinical application is still limited. Here, we isolated a DNA aptamer with a strong affinity and inhibitory activity against IDO1, designated as IDO-APT. By conjugating with nanoparticles, in situ injection of IDO-APT to CT26 tumor-bearing mice significantly suppresses the activity of regulatory T cells and promotes the function of CD8+ T cells, leading to tumor suppression and prolonged survival. Therefore, this functional IDO1-specific aptamer with potent anti-tumor effects may serve as a potential therapeutic strategy in cancer immunotherapy. Our data provide an alternative way to target IDO1 in addition to small molecule inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...