Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Antimicrob Agents Chemother ; 68(3): e0117523, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38259089

ABSTRACT

Staphylococcus aureus sequence type (ST) 5 has spread worldwide; however, phylogeographic studies on the evolution of global phylogenetic and Asian clades of ST5 are lacking. This study included 368 ST5 genome sequences, including 111 newly generated sequences. Primary phylogenetic analysis suggested that there are five clades, and geographical clustering of ST5 methicillin-resistant S. aureus (MRSA) was linked to the acquisition of S. aureus pathogenicity islands (SaPIs; enterotoxin gene island) and integration of the prophage φSa3. The most recent common ancestor of global S. aureus ST5 dates back to the mid-1940s, coinciding with the clinical introduction of penicillin. Bayesian phylogeographic inference allowed to ancestrally trace the Asian ST5 MRSA clade to Japan, which may have spread to major cities in China and Korea in the 1990s. Based on a pan-genome-wide association study, the emergence of Asian ST5 clades was attributed to the gain of prophages, SaPIs, and plasmids, as well as the coevolution of resistance genes. Clade IV displayed greater genomic diversity than the Asian MRSA clades. Collectively, our study provides in-depth insights into the global evolution of S. aureus ST5 mainly in China and the United States and reveals that different S. aureus ST5 clades have arisen independently in different parts of the world, with limited geographic dispersal across continents.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Phylogeny , Genome-Wide Association Study , Bayes Theorem , Genotype , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Genetic Variation/genetics
2.
J Adv Res ; 55: 119-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36889461

ABSTRACT

INTRODUCTION: Previous studies have evaluated metagenomic next-generation sequencing (mNGS) of cell-free DNA (cfDNA) for pathogen detection in blood and body fluid samples. However, no study has assessed the diagnostic efficacy of mNGS using cellular DNA. OBJECTIVES: This is the first study to systematically evaluate the efficacy of cfDNA and cellular DNA mNGS for pathogen detection. METHODS: A panel of seven microorganisms was used to compare cfDNA and cellular DNA mNGS assays concerning limits of detection (LoD), linearity, robustness to interference, and precision. In total, 248 specimens were collected between December 2020 and December 2021. The medical records of all the patients were reviewed. These specimens were analysed using cfDNA and cellular DNA mNGS assays, and the mNGS results were confirmed using viral qPCR, 16S rRNA, and internal transcribed spacer (ITS) amplicon next-generation sequencing. RESULTS: The LoD of cfDNA and cellular DNA mNGS was 9.3 to 149 genome equivalents (GE)/mL and 27 to 466 colony-forming units (CFU)/mL, respectively. The intra- and inter-assay reproducibility of cfDNA and cellular DNA mNGS was 100%. Clinical evaluation revealed that cfDNA mNGS was good at detecting the virus in blood samples (receiver operating characteristic (ROC) area under the curve (AUC), 0.9814). In contrast, the performance of cellular DNA mNGS was better than that of cfDNA mNGS in high host background samples. Overall, the diagnostic efficacy of cfDNA combined with cellular DNA mNGS (ROC AUC, 0.8583) was higher than that of cfDNA (ROC AUC, 0.8041) or cellular DNA alone (ROC AUC, 0.7545). CONCLUSION: Overall, cfDNA mNGS is good for detecting viruses, and cellular DNA mNGS is suitable for high host background samples. The diagnostic efficacy was higher when cfDNA and cellular DNA mNGS were combined.


Subject(s)
Body Fluids , Cell-Free Nucleic Acids , Humans , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , High-Throughput Nucleotide Sequencing , Cell-Free Nucleic Acids/genetics , DNA
3.
EBioMedicine ; 98: 104858, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925777

ABSTRACT

BACKGROUND: Nanopore metagenomics has been used for infectious disease diagnosis for bacterial pathogens. However, this technology currently lacks comprehensive performance studies in clinical settings for simultaneous detection of bacteria, fungi, and viruses. METHODS: We developed a dual-process of Nanopore sequencing for one sample, with unbiased metagenomics in Meta process and target enrichment in Panel process (Nanopore Meta-Panel process, NanoMP) and prospectively enrolled 450 respiratory specimens from multiple centers. The filter system of pathogen detection was established with machine learning and receiver operator characteristic (ROC) curve to optimize the detection accuracy based on orthogonal test of 21 species. Antimicrobial resistance (AMR) genes were identified based on the Comprehensive Antibiotic Resistance Database (CARD) and single-nucleotide polymorphism matrix. FINDINGS: Our approach showed high sensitivity in Meta process, with 82.9%, 88.7%, and 75.0% for bacteria, fungi (except Aspergillus), and Mycobacterium tuberculosis groups, respectively. Moreover, target amplification improved the sensitivity of virus (>80.0% vs. 39.4%) and Aspergillus (81.8% vs. 42.3%) groups in Panel process compared with Meta process. Overall, NanoMP achieved 80.2% sensitivity and 98.8% specificity compared with the composite reference standard, and we were able to accurately detect AMR genes including blaKPC-2, blaOXA-23 and mecA and distinguish their parent organisms in patients with mixed infections. INTERPRETATION: We combined metagenomic and enriched Nanopore sequencing for one sample in parallel. Our NanoMP approach simultaneously covered bacteria, viruses and fungi in respiratory specimens and demonstrated good diagnostic performance in real clinical settings. FUNDING: National Key Research and Development Program of China and National Natural Science Foundation of China.


Subject(s)
Nanopore Sequencing , Respiratory Tract Infections , Humans , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/genetics , Bacteria/genetics , Metagenome , China , High-Throughput Nucleotide Sequencing , Metagenomics
4.
Microbiol Spectr ; 11(3): e0090923, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37052483

ABSTRACT

Staphylococcus aureus is subdivided into lineages termed sequence types (STs), infections of which necessitate the expression of virulence factors and metabolic adaptation to the host niche. Given that mechanisms underlying the dynamic replacement of sequence types in S. aureus populations have yet to be sufficiently determined, we investigated the role of metabolic determinants in epidemic clones. mleS, encoding the NAD+-dependent malolactic enzyme, was found to be carried by the epidemic clones ST59 and ST398, although not by ST239 and ST5. The genomic location of mleS in the metabolism-associated region flanked by the thiol-specific redox system and glycolysis operon implies that it plays significant roles in metabolism and pathogenesis. Mouse skin abscess caused by the BS19-mleS mutant strain (isogenic mleS mutant in an ST59 isolate) was significantly attenuated and associated with reductions in interleukin-6 (IL-6) and lactic acid production. mleS deletion also impaired S. aureus biofilm formation and survival in RAW264.7 cells. The BS19-mleS-mutant was also characterized by reduced ATP and lactic acid production under microaerobic conditions; however, NAD+/NADH levels remained unaffected. mleS is thus identified as an epidemiological marker that plays an important role in the microaerobic metabolism and pathogenesis of epidemic S. aureus clones. IMPORTANCE Given the importance of metabolic adaptation during infection, new insights are required regarding the pathogenesis of S. aureus, particularly for epidemic clones. We accordingly investigated the role of metabolic determinants that are unique to the epidemic clones ST59 and ST398. Our results provide evidence that the NAD+-dependent malolactic enzyme-coding gene mleS is an epidemiological marker that plays an important role in the microaerobic metabolism and pathogenesis of epidemic S. aureus clones.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Mice , Staphylococcus aureus/genetics , Abscess , NAD , Staphylococcal Infections/epidemiology , Macrophages
5.
Microbiol Spectr ; : e0189822, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786564

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) infection has become a public health crisis. Recently, we isolated small-colony variants (SCVs) of MRSA, which are characterized by slow growth, decreased virulence, increased antibiotic resistance, and immune evasion. In the present study, we provided proteomic and transcriptomic profiles of clinical MRSA sequence type 239 (ST239) normal strains and SCVs and attempted to identify the key genes or pathways closely related to SCV formation and survival. RNAs and proteins were extracted and subjected to RNA sequencing and mass spectrometry, and the transcriptome and proteome were evaluated via bioinformatic analysis. The results were verified by functional assays. In total, 822 differentially expressed genes (DEGs) and 773 differentially expressed proteins (DEPs) were identified; of these, 286 DEGs and DEPs were correlated and subjected to Kyoto Encyclopedia Genes and Genomes analysis. Some pathways were significant, including ABC transporters, ribosome biogenesis, and metabolic pathways such as glycolysis/gluconeogenesis and the citrate cycle (tricarboxylic acid [TCA] cycle). Based on these results, we found that the downregulation of ABC transporters and the TCA cycle pathway resulted in electron transport chain deficiencies and reduced ATP production in SCVs, leading to a dependence on glycolysis and its upregulation. In addition, the upregulation of capsule polysaccharides and the downregulation of surface proteins prevented phagocytosis and reduced the adhesion of host cells, contributing to immune evasion by SCVs. These findings contribute to a better understanding of the mechanisms of SCV formation and survival. IMPORTANCE Small-colony variants (SCVs) of Staphylococcus aureus have drawn increasing research attention. Owing to their slow growth, atypical colony morphology, and unusual metabolic characteristics, SCVs often cause confusion in the laboratory. Furthermore, clinical treatment of SCVs is challenging owing to their antibiotic resistance and immune evasion, leading to persistent and recurrent infections. However, the mechanisms underlying their formation remain unclear. In this study, we isolated SCVs of methicillin-resistant S. aureus and provided transcriptomic and proteomic profiles of normal strains and SCVs. Based on our analysis, glycolysis upregulation and TCA cycle downregulation affected the electron transport chain and energy supply, leading to slower metabolism. Moreover, capsular biosynthesis was increased, while the number of surface proteins decreased, thus promoting immune evasion by SCVs.

6.
Front Cell Infect Microbiol ; 13: 1321626, 2023.
Article in English | MEDLINE | ID: mdl-38259974

ABSTRACT

Objectives: Staphylococcal small-colony variants (SCVs) are common in cardiac implantable electronic device (CIED) infections. This is the first retrospective and multi-case study on CIED infections due to staphylococcal SCVs, aiming to provide a theoretical basis for the clinical management of CIED and device-related infections caused by staphylococcal SCVs. Methods: Ninety patients with culture positive CIED infections were enrolled between 2021 and 2022. We compared the demographic and clinical characteristics of patients with and without SCVs and performed genomic studies on SCVs isolates. Results: Compared to patients without SCVs, those with SCVs had a longer primary pacemaker implantation time and were more likely to have a history of device replacement and infection. They showed upregulated inflammatory indicators, especially higher NEUT% (52.6 vs. 26.8%, P = 0.032) and they had longer hospital stays (median 13 vs. 12 days, P = 0.012). Comparative genomics analysis was performed on Staphylococcus epidermidis wild-type and SCVs. Some genes were identified, including aap, genes encoding adhesin, CHAP domain-containing protein, LPXTG cell wall anchor domain-containing protein, and YSIRK-type signal peptide-containing protein. Conclusion: Staphylococcal SCVs affect the clinical characteristics of CIED infections. The process of staphylococcal SCVs adherence, biofilm formation, and interaction with neutrophils play a vital role.


Subject(s)
Communicable Diseases , Genomics , Humans , Retrospective Studies , Staphylococcus , Staphylococcus epidermidis/genetics , Electronics
7.
mSystems ; 7(6): e0083122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36409083

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) of the sequence type 59 (ST59) and ST398 lineages has emerged in hospitals and displayed a higher virulent potential than its counterparts ST5 and ST239. However, the mechanism of the host cell-pathogen interaction and specific determinates that contribute to the success of epidemic clones remain incompletely understood. In the present study, 142 S. aureus strains (ST59, ST398, ST239, and ST5) were selected from our 7-year national surveillance of S. aureus bloodstream infections (n = 983). We revealed that ST59 and ST398 had a higher prevalence of the protease-associated genes hysAVSaß, paiB, and cfim and enhanced proteolytic activity than the other lineages. ST59 and ST398 showed a higher expression of RNAIII and psmα and greater proficiency at causing cell lysis than other lineages. Furthermore, ST59 and ST398 were strongly recognized by human neutrophils and caused more cell apoptosis and neutrophil extracellular trap degradation than the other lineages. In addition, these strains differed substantially in their repertoire and composition of intact adhesion genes. Moreover, ST398 displayed higher adaptability to human epidermal keratinocytes and a unique genetic arrangement inside the oligopeptide ABC transport system, indicating functional variations. Overall, our study revealed some potential genomic traits associated with virulence and fitness that might account for the success of epidemic clones. IMPORTANCE Considerable efforts have been exerted to identify factors contributing to the success of epidemic Staphylococcus aureus clones, however, comparative phenotypic studies lack representation owing to the small number of strains. Large-scale strain collections focused on the description of genomic characteristics. Moreover, methicillin-resistant S. aureus infections constitute 30% to 40% of S. aureus bloodstream infections, and recent research has elucidated highly virulent methicillin-susceptible S. aureus strains. However, comprehensive research on the factors contributing to the success of epidemic S. aureus clones is lacking. In this study, 142 S. aureus strains were selected from our 7-year national surveillance of S. aureus bloodstream infections (n = 983) accompanied by a rigorous strain selection process. A combination of host cell-pathogen interactions and genomic analyses was applied to the represented strains. We revealed some potential genomic traits associated with virulence and fitness that might account for the success of epidemic clones.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Virulence/genetics , Host Adaptation , Staphylococcal Infections/epidemiology , Genomics
8.
Microbiol Spectr ; 10(3): e0267021, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35481835

ABSTRACT

Cefiderocol has been approved in the United States and Europe but not in China. We aim to evaluate carbapenem-resistant Enterobacterales (CRE) susceptibility to cefiderocol to provide baseline data and investigate the resistance mechanism. From 2018 to 2019, 1,158 CRE isolates were collected from 23 provinces and municipalities across China. The MICs of antimicrobials were determined via the agar dilution and broth microdilution methods. Whole-genome sequencing was performed for 26 cefiderocol-resistant Escherichia coli isolates to investigate the resistance mechanism. Clone transformations were used to explore the function of cirA, pbp3, and blaNDM-5 in resistance. Among the 21 antimicrobials tested, aztreonam-avibactam had the highest antibacterial activity (98.3%), followed by cefiderocol (97.3%) and colistin (95.3%). A total of 26 E. coli isolates harboring New Delhi metallo-beta-lactamase 5 (NDM-5) showed high levels of cefiderocol resistance, of which sequence type 167 (ST167) accounted for 76.9% (20/26). We found 4 amino-acid insertions (YRIN/YRIK) at position 333 of penicillin-binding protein 3 (PBP3) in the 26 E. coli isolates, and 22 isolates had a siderophore receptor cirA premature stop codon. After obtaining the wild-type cirA supplementation, the MIC of the transformants decreased by 8 to 16 times in two cefiderocol-resistant isolates. A cefiderocol-susceptible isolate harboring NDM-5 has an MIC increased from 1 µg/mL to 64 µg/mL after cirA deletion, and the MIC decreased from 64 µg/mL to 0.5 µg/mL after blaNDM-5 deletion. The MIC of the E. coli DH5α, from which the pbp3 mutant was obtained, increased from 0.064 µg/mL to 0.25 µg/mL. Cefiderocol showed activity against most CRE in China. The resistance of ST167 E. coli to cefiderocol is a combination of the premature stop codon of cirA, pbp3 mutation, and blaNDM-5 existence. IMPORTANCE Cefiderocol, a new siderophore cephalosporin, has been approved in the United States and Europe but not in China. At present, there are almost no antimicrobial susceptibility evaluation data on cefiderocol in China. We evaluated the in vitro susceptibility of 1,158 strains of carbapenem-resistant Enterobacterales to cefiderocol and other antibiotics. We found that a high proportion of Escherichia coli showed high-level resistance to cefiderocol. Whole-genome sequencing (WGS) and molecular cloning experiments confirmed that the synergistic effect of the cirA gene premature stop codon, blaNDM-5 existence, and the pbp3 mutation is associated with high levels of cefiderocol resistance.


Subject(s)
Carbapenems , Cephalosporins , Drug Resistance, Bacterial , Escherichia coli , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cephalosporins/pharmacology , China , Codon, Nonsense/pharmacology , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Humans , Microbial Sensitivity Tests , Siderophores/pharmacology , beta-Lactamases/genetics , Cefiderocol
9.
Front Microbiol ; 13: 841289, 2022.
Article in English | MEDLINE | ID: mdl-35308374

ABSTRACT

With the reduction in sequencing price and acceleration of sequencing speed, it is particularly important to directly link the genotype and phenotype of bacteria. Here, we firstly predicted the minimum inhibitory concentrations of ten antimicrobial agents for Staphylococcus aureus using 466 isolates by directly extracting k-mer from whole genome sequencing data combined with three machine learning algorithms: random forest, support vector machine, and XGBoost. Considering one two-fold dilution, the essential agreement and the category agreement could reach >85% and >90% for most antimicrobial agents. For clindamycin, cefoxitin and trimethoprim-sulfamethoxazole, the essential agreement and the category agreement could reach >91% and >93%, providing important information for clinical treatment. The successful prediction of cefoxitin resistance showed that the model could identify methicillin-resistant S. aureus. The results suggest that small datasets available in large hospitals could bypass the existing basic research and known antimicrobial resistance genes and accurately predict the bacterial phenotype.

10.
Nat Commun ; 13(1): 1131, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241674

ABSTRACT

The mobile resistance gene blaNDM encodes the NDM enzyme which hydrolyses carbapenems, a class of antibiotics used to treat some of the most severe bacterial infections. The blaNDM gene is globally distributed across a variety of Gram-negative bacteria on multiple plasmids, typically located within highly recombining and transposon-rich genomic regions, which leads to the dynamics underlying the global dissemination of blaNDM to remain poorly resolved. Here, we compile a dataset of over 6000 bacterial genomes harbouring the blaNDM gene, including 104 newly generated PacBio hybrid assemblies from clinical and livestock-associated isolates across China. We develop a computational approach to track structural variants surrounding blaNDM, which allows us to identify prevalent genomic contexts, mobile genetic elements, and likely events in the gene's global spread. We estimate that blaNDM emerged on a Tn125 transposon before 1985, but only reached global prevalence around a decade after its first recorded observation in 2005. The Tn125 transposon seems to have played an important role in early plasmid-mediated jumps of blaNDM, but was overtaken in recent years by other elements including IS26-flanked pseudo-composite transposons and Tn3000. We found a strong association between blaNDM-carrying plasmid backbones and the sampling location of isolates. This observation suggests that the global dissemination of the blaNDM gene was primarily driven by successive between-plasmid transposon jumps, with far more restricted subsequent plasmid exchange, possibly due to adaptation of plasmids to their specific bacterial hosts.


Subject(s)
Carbapenems , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Interspersed Repetitive Sequences/genetics , Microbial Sensitivity Tests , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
11.
Microbiol Spectr ; 10(1): e0159321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35044218

ABSTRACT

Acinetobacter baumannii is an important opportunistic pathogen of nosocomial infections. A. baumannii presently exhibits increasing antibiotic resistance, which poses great challenges to public health. The occurrence of tigecycline-resistant A. baumannii is related to tigecycline treatment and the within-host evolution of bacteria. We analyzed isogenic A. baumannii isolates from two critically ill patients who underwent tigecycline treatment. Whole-genome sequencing and comparative analyses were performed to determine the characteristics of genomic evolution. We conducted phenotypic studies, including in vitro antibiotic sensitivity tests, biofilm formation tests, growth curve determination, serum bactericidal determination, and Galleria mellonella lethality assays. In vivo emergent tigecycline resistance was observed after tigecycline treatment. After the withdrawal of tigecycline pressure, tigecycline-resistant isolates were not isolated from one patient. Four tigecycline-resistant isolates exhibited lower growth rates. The biofilm formation and virulence characteristics of tigecycline-resistant isolates were reasonably different between the two patients. A special phenotype appeared after tigecycline treatment in both patients, accompanied by reduced serum tolerance, enhanced biofilm formation ability, and reduced virulence of Galleria mellonella. Most of the genomic variation occurred after the tigecycline treatment, primarily involving transcription-, signal transduction-, translation-, ribosomal biogenesis-, and cell wall biogenesis-related genes. We determined that the genomic variations in baeR, wzc, aroQ, rluC, and adeS and acquisition of ISAba1 were associated with tigecycline resistance in vivo. Capsular polysaccharide-related genes, wzc, and itrA2, and aroQ, were the key genes related to the virulence evolution of A. baumannii within the host. IMPORTANCE Multidrug-resistant Acinetobacter baumannii poses a huge challenge to clinical treatment, and tigecycline is considered a last-line drug for the treatment of multidrug-resistant A. baumannii. However, the mechanism of tigecycline resistance in vivo has not been elucidated. This study analyzed the genomic and phenotypic evolution of tigecycline-resistant A. baumannii in two critically ill patients. In this study, after treatment with tigecycline, tigecycline-resistant A. baumannii emerged with higher fitness costs. After the withdrawal of tigecycline pressure, tigecycline-resistant isolates were not isolated from one patient. The in vivo and in vitro virulence of the isolates exhibited diametrically opposite results in the two patients. Genomic variations in baeR, wzc, aroQ, rluC, and adeS and acquisition of ISAba1 were associated with tigecycline resistance in vivo. The capsular polysaccharide-related genes, wzc, itrA2, and aroQ, were the key genes related to the virulence of A. baumannii in hosts. Our research provides a theoretical basis for elucidating the mechanism of tigecycline resistance and presents new clues for future surveillance and treatment of multidrug-resistant A. baumannii.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/therapeutic use , Tigecycline/therapeutic use , Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Critical Illness/therapy , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Genomics , Humans , Microbial Sensitivity Tests , Moths , Phenotype , Phylogeny , Virulence
12.
J Appl Toxicol ; 42(4): 671-682, 2022 04.
Article in English | MEDLINE | ID: mdl-34655103

ABSTRACT

Asthma progression is involved in airway epithelial dysfunction, airway inflammatory response, and mucus hypersecretion. Euxanthone has been found to exhibit cytotoxic activity on several human diseases, such as neurological disorders and cancers. Our study aimed to explore the influence of euxanthone on lipopolysaccharide (LPS)-induced injury, inflammatory response, and mucin 5AC (MUC5AC) hypersecretion in human airway epithelial cells (AECs). Network pharmacology analysis was carried out to analyze the drug targets and key pathways of euxanthone against asthma. Cell injury was evaluated by CCK-8, Lactate dehydrogenase (LDH) release assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The production of interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), and MUC5AC was measured using enzyme-linked immunosorbent assay (ELISA). MUC5AC mRNA expression was detected by qRT-PCR. Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) protein expression was examined by western blot analysis. Venn diagram showed 14 overlapping targets between euxanthone and asthma. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we focused on TLR signaling pathway. LPS exposure evoked viability reduction, increased LDH release and apoptosis, and induced production of inflammatory cytokines (IL-6, IL-8, and MCP-1) and MUC5AC hypersecretion in human AECs, which were alleviated by euxanthone. Mechanistically, we validated that euxanthone attenuated LPS-induced activation of TLR4/MyD88 pathway in AECs. Moreover, inhibition of the TLR4/MyD88 pathway enhanced the inhibitory effect of euxanthone on LPS-induced cell injury, inflammatory response and MUC5AC expression. In conclusion, euxanthone attenuated LPS-induced cell injury, inflammatory response, and MUC5AC expression in AECs by inhibiting the activation of TLR4/MyD88 pathway.


Subject(s)
Asthma , Lipopolysaccharides , Asthma/metabolism , Epithelial Cells , Humans , Interleukin-8/metabolism , Lipopolysaccharides/toxicity , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin 5AC/pharmacology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Xanthones
13.
J Antimicrob Chemother ; 77(3): 625-632, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34893837

ABSTRACT

OBJECTIVES: Tigecycline is a last-resort antibiotic used to treat lethal infections caused by carbapenem-resistant Enterobacterales; however, plasmid-borne tigecycline resistance tmexCD-toprJ gene clusters can confer tigecycline resistance. The aim of the study was to identify novel subtypes and the spread of tmexCD-toprJ. METHODS: Five non-duplicate isolates of different species, carrying tmexCD-toprJ gene clusters or novel subtypes, were isolated from patients across China between November 2018 and June 2019. WGS was performed using Illumina and Nanopore platforms. A phylogenetic tree was constructed using a dataset of 77 sequences carrying the tmexCD-toprJ gene clusters, 72 of which were downloaded from NCBI with a blastn identity cut-off of 95%. RESULTS: We detected six different transfer units and two novel subtypes (tmexC1D1.2-toprJ1 and tmexC2D2.2-toprJ2) of the tmexCD-toprJ gene clusters. Among the six transfer units, three were mediated by IS26, while the rest were presumably mediated by Tn5393, hypothetical integrases (xerD-hp clusters-umuC-integrases-tnfxB2-tmexC2D2-toprJ2-umuC) and hypothetical units (hp-hp-hp-tnfxB2-tmexC2D2.2-toprJ2-ΔTn5393-Tn6292). Moreover, two tmexCD-toprJ-like gene clusters co-located on the same plasmid with blaNDM in five isolates. Phylogenetic analysis revealed that tmexCD-toprJ gene clusters may have originated in Pseudomonas spp., being mainly distributed in Pseudomonas spp. and Klebsiella spp. (64/77). Most tmexCD-toprJ gene clusters in Enterobacterales were located on plasmids, indicating that the gene clusters have a high inter-species transfer risk after transfer to Enterobacterales. CONCLUSIONS: In summary, to the best of our knowledge, this is the first report of tmexCD-toprJ gene clusters being isolated from Enterobacter cloacae and Klebsiella oxytoca, revealing that these multiple transfer units should be further studied because of their clinical significance.


Subject(s)
Enterobacter cloacae , Klebsiella oxytoca , Carbapenems/pharmacology , Enterobacter cloacae/genetics , Humans , Klebsiella oxytoca/genetics , Microbial Sensitivity Tests , Multigene Family , Phylogeny , beta-Lactamases/genetics
14.
EBioMedicine ; 73: 103639, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34700283

ABSTRACT

BACKGROUND: Lung biopsy tissue samples can be used for infection detection and cancer diagnosis. Metagenomic next-generation sequencing (mNGS) has the potential to further improve diagnosis. METHODS: From July 2018 to May 2020, lung biopsy samples of 133 patients with suspected pulmonary infection or abnormal imaging findings were collected and subjected to clinical microbiological testing, Illumina and Nanopore sequencing to identify pathogens. The neural networks were pretrained by extracting features of human reads from 2,095 metagenomic next-generation sequencing results, and the human reads of lung biopsy samples were entered into the validated pipeline to predict the risk of cancer. FINDINGS: Based on the pathogen-cancer detection pipeline, the Illumina platform showed 77·6% sensitivity and 97·6% specificity compared to the composite reference standard for infection diagnosis. However, the Nanopore platform showed 34·7% sensitivity and 98·7% specificity. mNGS identified more fungi, which was confirmed by subsequent pathological examination. M. tuberculosis complex was weakly detected. For cancer detection, compared with histology, the Illumina platform showed 83·7% sensitivity and 97·6% specificity, diagnosing an additional 36 cancer patients, of whom half had abnormal imaging findings (pulmonary shadow, space-occupying lesions, or nodules). INTERPRETATION: For the first time, we have established a pipeline to simultaneously detect pathogens and cancer based on Illumina sequencing of lung biopsy tissue. This pipeline efficiently diagnosed cancer in patients with abnormal imaging findings. FUNDING: This work was supported by the National Key Research and Development Program of China and National Natural Science Foundation of China.


Subject(s)
Biopsy , Lung Diseases/diagnosis , Lung Diseases/etiology , Lung/pathology , Metagenomics , Neoplasms/complications , Adult , Aged , Biopsy/methods , Disease Management , Disease Susceptibility , Female , Genomic Instability , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenome , Metagenomics/methods , Middle Aged , Neoplasms/diagnosis , Young Adult
15.
Genome Med ; 13(1): 171, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711267

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen subdivided into lineages termed sequence types (STs). Since the 1950s, successive waves of STs have appeared and replaced previously dominant lineages. One such event has been occurring in China since 2013, with community-associated (CA-MRSA) strains including ST59 largely replacing the previously dominant healthcare-associated (HA-MRSA) ST239. We previously showed that ST59 isolates tend to have a competitive advantage in growth experiments against ST239. However, the underlying genomic and phenotypic drivers of this replacement event are unclear. METHODS: Here, we investigated the replacement of ST239 using whole-genome sequencing data from 204 ST239 and ST59 isolates collected in Chinese hospitals between 1994 and 2016. We reconstructed the evolutionary history of each ST and considered two non-mutually exclusive hypotheses for ST59 replacing ST239: antimicrobial resistance (AMR) profile and/or ability to colonise and persist in the environment through biofilm formation. We also investigated the differences in cytolytic activity, linked to higher virulence, between STs. We performed an association study using the presence and absence of accessory virulence genes. RESULTS: ST59 isolates carried fewer AMR genes than ST239 and showed no evidence of evolving towards higher AMR. Biofilm production was marginally higher in ST59 overall, though this effect was not consistent across sub-lineages so is unlikely to be a sole driver of replacement. Consistent with previous observations of higher virulence in CA-MRSA STs, we observed that ST59 isolates exhibit significantly higher cytolytic activity than ST239 isolates, despite carrying on average fewer putative virulence genes. Our association study identified the chemotaxis inhibitory protein (chp) as a strong candidate for involvement in the increased virulence potential of ST59. We experimentally validated the role of chp in increasing the virulence potential of ST59 by creating Δchp knockout mutants, confirming that ST59 can carry chp without a measurable impact on fitness. CONCLUSIONS: Our results suggest that the ongoing replacement of ST239 by ST59 in China is not associated to higher AMR carriage or biofilm production. However, the increase in ST59 prevalence is concerning since it is linked to a higher potential for virulence, aided by the carriage of the chp gene.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , China/epidemiology , Evolution, Molecular , Genome, Bacterial , Genomics , Genotype , Hospitals , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Prevalence , Virulence/genetics , Virulence Factors/genetics , Whole Genome Sequencing
16.
Infect Drug Resist ; 14: 3553-3562, 2021.
Article in English | MEDLINE | ID: mdl-34511946

ABSTRACT

INTRODUCTION: Colonization of the respiratory tract by Acinetobacter baumannii has been established as an independent risk factor for bacteremia. However, within-host evolution of A. baumannii in bacteremia has not been extensively investigated. METHODS: We performed whole-genome sequencing to discover the evolutionary characteristics that accompany the transition from respiratory tract carriage to bloodstream infection in three patients with A. baumannii bacteremia. RESULTS: Within-host genetic diversity was identified. A total of 21 single nucleotide variants (SNVs) were detected. Genic and intergenic evolution occurred particularly in secretion system, DNA recombination, and cell motility genes. Intergenic SNVs occurred more frequently compared to synonymous and non-synonymous SNVs, which indicated potential transcription or translation regulation. Non-synonymous mutations mostly occurred during the transition from respiratory tract carriage to bloodstream infection. Isolates of clonal complex 208 (CC208) had lower substitution rate with approximately 10-6 nucleotide substitutions per site year-1, compared with non-CC208 isolates (approximately 10-5). We found evidence for the occurrence of recombination in one patient. A total of 259 genes were found to be gained or lost during the within-host evolution, and 231 genes were only detected in one patient. Gene function annotation results suggested that most genes (71/259) were related to replication, recombination, and repair. Universal bloodstream specific genes were not found in all three patients, and only one putative membrane protein related gene was lost in two patients. CONCLUSION: Our results indicated that within-host evolution of A. baumannii bacteremia was driven by mutations, gene content changes, and limited effect of recombination. Gene content diversity between different patients was identified, which suggested interplay of both host and pathogen factors in within-host genetic diversity. Secretion system-related genes showed higher frequency of genomic variations during the within-host evolution. Our findings enhanced our understanding of within-host evolution of A. baumannii bacteremia and provided a framework for discovering novel genomic changes and pathogenicity genes important for bacteremia, which will be validated in future studies.

17.
Virol J ; 18(1): 157, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315474

ABSTRACT

BACKGROUND: The numbers of confirmed cases of coronavirus disease 2019 (COVID-19) and COVID-19 related deaths are still increasing, so it is very important to determine the risk factors of COVID-19. Dyslipidemia is a common complication in patients with COVID-19, but the association of dyslipidemia with the severity and mortality of COVID-19 is still unclear. The aim of this study is to analyze the potential association of dyslipidemia with the severity and mortality of COVID-19. METHODS: We searched the PubMed, Embase, MEDLINE, and Cochrane Library databases for all relevant studies up to August 24, 2020. All the articles published were retrieved without language restriction. All analysis was performed using Stata 13.1 software and Mantel-Haenszel formula with fixed effects models was used to compare the differences between studies. The Newcastle Ottawa scale was used to assess the quality of the included studies. RESULTS: Twenty-eight studies involving 12,995 COVID-19 patients were included in the meta-analysis, which was consisted of 26 cohort studies and 2 case-control studies. Dyslipidemia was associated with the severity of COVID-19 (odds ratio [OR] = 1.27, 95% confidence interval [CI] 1.11-1.44, P = 0.038, I2 = 39.8%). Further, patients with dyslipidemia had a 2.13-fold increased risk of death compared to patients without dyslipidemia (95% CI 1.84-2.47, P = 0.001, I2 = 66.4%). CONCLUSIONS: The results proved that dyslipidemia is associated with increased severity and mortality of COVID-19. Therefore, we should monitor blood lipids and administer active treatments in COVID-19 patients with dyslipidemia to reduce the severity and mortality.


Subject(s)
COVID-19/pathology , Dyslipidemias/pathology , Lipids/blood , Severity of Illness Index , COVID-19/mortality , Dyslipidemias/mortality , Humans , Risk Factors , SARS-CoV-2
18.
Eur J Clin Microbiol Infect Dis ; 40(4): 683-690, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33029764

ABSTRACT

Hospital-acquired pneumonia (HAP) is a significant nosocomial infection; data on the distribution and antimicrobial resistance profiles of HAP in China are limited. We included 2827 adult patients with HAP from the Chinese Antimicrobial Resistance Surveillance of Nosocomial Infections network admitted in 15 Chinese teaching hospitals between 2007 and 2016. Clinical data and antimicrobial susceptibility of isolated pathogens were obtained from the medical records and central laboratory, respectively. Multivariable logistic regression was performed to determine the risk factors for mortality and multidrug resistance (MDR). A total of 386 (13.7%) patients died in the hospital, while 1181 (41.8%) developed ventilator-associated pneumonia (VAP). Active immunosuppressant therapy (OR 1.915 (95% CI 1.475-2.487)), solid tumor (OR 1.860 (95% CI 1.410-2.452)), coma (OR 1.783 (95% CI 1.364-2.333)), clinical pulmonary infection score ≥7 (OR 1.743 (95% CI 1.373-2.212)), intensive care unit stay (OR 1.652 (95% CI 1.292-2.111)), age ≥65 years (OR 1.621 (95% CI 1.282-2.049)), and tracheal cannula insertion (OR 1.613 (95% CI 1.169-2.224)) were independent risk factors for in-hospital mortality. Liver cirrhosis (OR 3.120 (95% CI 1.436-6.780)) and six other variables were independent predictors of MDR. Acinetobacter baumannii (25.6%), Pseudomonas aeruginosa (20.1%), Klebsiella pneumoniae (15.4%), and Staphylococcus aureus (12.6%) were the most common pathogens (MDR prevalence 64.9%). Isolates from VAP patients showed more A. baumannii and less K. pneumoniae and E. coli strains (p < 0.001, respectively) than those from patients without VAP. The proportion of methicillin-resistant S. aureus strains decreased; that of carbapenem-resistant A. baumannii and Enterobacterales strains increased. There had been changes in the antibiotic resistance profiles of HAP pathogens in China. Risk factors for mortality and MDR are important for the selection of antimicrobials for HAP in China.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteria/classification , Bacteria/drug effects , Cross Infection/microbiology , Pneumonia, Bacterial/microbiology , Anti-Bacterial Agents/pharmacology , China/epidemiology , Cross Infection/epidemiology , Cross Infection/pathology , Drug Resistance, Multiple, Bacterial , Humans , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/pathology , Prospective Studies , Risk Factors
19.
Clin Infect Dis ; 71(Suppl 4): S416-S426, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33367583

ABSTRACT

BACKGROUND: Only few pathogens that cause lower respiratory tract infections (LRTIs) can be identified due to limitations of traditional microbiological methods and the complexity of the oropharyngeal normal flora. Metagenomic next-generation sequencing (mNGS) has the potential to solve this problem. METHODS: This prospective observational study sequentially enrolled 93 patients with LRTI and 69 patients without LRTI who visited Peking University People's Hospital in 2019. Pathogens in bronchoalveolar lavage fluid (BALF) specimens were detected using mNGS (DNA and RNA) and traditional microbiological assays. Human transcriptomes were compared between LRTI and non-LRTI, bacterial and viral LRTI, and tuberculosis and nontuberculosis groups. RESULTS: Among 93 patients with LRTI, 20%, 35%, and 65% of cases were detected as definite or probable pathogens by culture, all microbiological tests, and mNGS, respectively. Our in-house BALF mNGS platform had an approximately 2-working-day turnaround time and detected more viruses and fungi than the other methods. Taking the composite reference standard as a gold standard, it had a sensitivity of 66.7%, specificity of 75.4%, positive-predictive value of 78.5%, and negative-predictive value of 62.7%. LRTI-, viral LRTI-, and tuberculosis-related differentially expressed genes were respectively related to immunity responses to infection, viral transcription and response to interferon-γ pathways, and perforin 1 and T-cell receptor B variable 9. CONCLUSIONS: Metagenomic DNA and RNA-seq can identify a wide range of LRTI pathogens, with improved sensitivity for viruses and fungi. Our in-host platform is likely feasible in the clinic. Host transcriptome data are expected to be useful for the diagnosis of LRTIs.


Subject(s)
Metagenomics , Respiratory Tract Infections , High-Throughput Nucleotide Sequencing , Humans , Immunity , Respiratory Tract Infections/diagnosis , Sensitivity and Specificity
20.
Front Microbiol ; 11: 533209, 2020.
Article in English | MEDLINE | ID: mdl-33193122

ABSTRACT

Carbapenemase-producing Enterobacterales have become a severe public health concern because of their rapidly transmissible resistance elements and limited treatment options. The most effective antimicrobial combinations against carbapenemase-producing Enterobacterales are currently unclear. Here, we aimed to assess the therapeutic effects of seven antimicrobial combinations (colistin-meropenem, colistin-tigecycline, colistin-rifampicin, colistin-erythromycin, meropenem-tigecycline, meropenem-rifampicin, and meropenem-tigecycline-colistin) against twenty-four carbapenem-producing Enterobacterales (producing bla KPC, bla NDM, coexisting bla NDM and bla IMP, and coexisting mcr-1/8/9 and bla NDM genes) and one carbapenem-susceptible Enterobacterales using the checkerboard assay, time-kill curves, and scanning electron microscopy. None of the combinations were antagonistic. The combination of colistin-rifampicin showed the highest synergistic effect of 76% (19/25), followed by colistin-erythromycin at 60% (15/25), meropenem-rifampicin at 24% (6/25), colistin-meropenem at 20% (5/25), colistin-tigecycline at 20% (5/25), and meropenem-tigecycline at 4% (1/25). The triple antimicrobial combinations of meropenem-tigecycline-colistin had a synergistic effect of 100%. Most double antimicrobial combinations were ineffective on isolates with coexisting bla NDM and bla IMP genes. Meropenem with tigecycline showed no synergistic effect on isolates that produced different carbapenemase genes and were highly resistant to meropenem (92% meropenem MIC ≥ 16 mg/mL). Colistin-tigecycline showed no synergistic effect on Escherichia coli producing bla NDM - 1 and Serratia marcescens. Time-kill curves showed that antimicrobial combinations achieved an eradication effect (≥ 3 log10 decreases in colony counts) within 24 h without regrowth, based on 1 × MIC of each drug. The synergistic mechanism of colistin-rifampicin may involve the colistin-mediated disruption of bacterial membranes, leading to severe alterations in their permeability, then causes more rifampicin to enter the cell and induces cell death. In conclusion, the antimicrobial combinations evaluated in this study may facilitate the successful treatment of patients infected with carbapenemase-producing pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...