Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
Quant Imaging Med Surg ; 14(6): 4015-4030, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846304

ABSTRACT

Background: Manual planning of scans in clinical magnetic resonance imaging (MRI) exhibits poor accuracy, lacks consistency, and is time-consuming. Meanwhile, classical automated scan plane positioning methods that rely on certain assumptions are not accurate or stable enough, and are computationally inefficient for practical application scenarios. This study aims to develop and evaluate an effective, reliable, and accurate deep learning-based framework that incorporates prior physical knowledge for automatic head scan plane positioning in MRI. Methods: A deep learning-based end-to-end automated scan plane positioning framework has been developed for MRI head scans. Our model takes a three-dimensional (3D) pre-scan image input, utilizing a cascaded 3D convolutional neural network to detect anatomical landmarks from coarse to fine. And then, with the determined landmarks, accurate scan plane localization can be achieved. A multi-scale spatial information fusion module was employed to aggregate high- and low-resolution features, combined with physically meaningful point regression loss (PRL) function and direction regression loss (DRL) function. Meanwhile, we simulate complex clinical scenarios to design data augmentation strategies. Results: Our proposed approach shows good performance on a clinically wide range of 229 MRI head scans, with a point-to-point absolute error (PAE) of 0.872 mm, a point-to-point relative error (PRE) of 0.10%, and an average angular error (AAE) of 0.502°, 0.381°, and 0.675° for the sagittal, transverse, and coronal planes, respectively. Conclusions: The proposed deep learning-based automated scan plane positioning shows high efficiency, accuracy and robustness when evaluated on varied clinical head MRI scans with differences in positioning, contrast, noise levels and pathologies.

2.
Front Genet ; 15: 1376971, 2024.
Article in English | MEDLINE | ID: mdl-38846957

ABSTRACT

Background: Pre-eclampsia is a pregnancy-related disorder characterized by hypertension and proteinuria, severely affecting the health and quality of life of patients. However, the molecular mechanism of macrophages in pre-eclampsia is not well understood. Methods: In this study, the key biomarkers during the development of pre-eclampsia were identified using bioinformatics analysis. The GSE75010 and GSE74341 datasets from the GEO database were obtained and merged for differential analysis. A weighted gene co-expression network analysis (WGCNA) was constructed based on macrophage content, and machine learning methods were employed to identify key genes. Immunoinfiltration analysis completed by the CIBERSORT method, R package "ClusterProfiler" to explore functional enrichment of these intersection genes, and potential drug predictions were conducted using the CMap database. Lastly, independent analysis of protein levels, localization, and quantitative analysis was performed on placental tissues collected from both preeclampsia patients and healthy control groups. Results: We identified 70 differentially expressed NETs genes and found 367 macrophage-related genes through WGCNA analysis. Machine learning identified three key genes: FNBP1L, NMUR1, and PP14571. These three key genes were significantly associated with immune cell content and enriched in multiple signaling pathways. Specifically, these genes were upregulated in PE patients. These findings establish the expression patterns of three key genes associated with M2 macrophage infiltration, providing potential targets for understanding the pathogenesis and treatment of PE. Additionally, CMap results suggested four potential drugs, including Ttnpb, Doxorubicin, Tyrphostin AG 825, and Tanespimycin, which may have the potential to reverse pre-eclampsia. Conclusion: Studying the expression levels of three key genes in pre-eclampsia provides valuable insights into the prevention and treatment of this condition. We propose that these genes play a crucial role in regulating the maternal-fetal immune microenvironment in PE patients, and the pathways associated with these genes offer potential avenues for exploring the molecular mechanisms underlying preeclampsia and identifying therapeutic targets. Additionally, by utilizing the Connectivity Map database, we identified drug targets like Ttnpb, Doxorubicin, Tyrphostin AG 825, and Tanespimycin as potential clinical treatments for preeclampsia.

3.
Fundam Res ; 4(1): 43-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38933847

ABSTRACT

Quasi-parametric chirped-pulse amplification (QPCPA), which features a theoretical peak power much higher than those obtained with Ti:sapphire laser or optical parametric chirped-pulse amplification, is promising for future ultra-intense lasers. The doped rare-earth ion used for idler dissipation is critical for effective QPCPA, but is usually not compatible with traditional crystals. Thus far, only one dissipative crystal of Sm3+-doped yttrium calcium oxyborate has been grown and applied. Here we introduce optical means to modify traditional crystals for QPCPA applications. We theoretically demonstrate two dissipation schemes by idler frequency doubling and sum-frequency generation with an additional laser. In contrast to absorption dissipation, the proposed nonlinear dissipations ensure not only high signal efficiency but also high small-signal gain. The demonstrated ability to optically modify crystals will facilitate the wide application of QPCPA.

4.
Article in English | MEDLINE | ID: mdl-38838049

ABSTRACT

OBJECTIVE: To determine whether combining cross-linked (CL) collagen-integrated xenogeneic bone blocks stabilized with the fixation of resorbable collagen membranes (CM) can enhance guided bone regeneration (GBR) in the overaugmented calvarial defect model. MATERIALS AND METHODS: Four circular defects with a diameter of 8 mm were prepared in the calvarium of 13 rabbits. Defects were randomly assigned to receive one of the following treatments: (i) non-cross-linked (NCL) porcine-derived collagen-embedded bone block covered by a CM without fixation (NCL + unfix group); (ii) NCL bone block covered by CM with fixation using bone-tack (NCL + fix group); (iii) cross-linked (CL) porcine-derived collagen-embedded bone block covered by CM without fixation (CL + unfix group); and (iv) CL bone block covered by CM with fixation using bone-tack fixation (CL + fix group). The efficacy of GBR was assessed through histological and molecular analyses after 2 and 8 weeks. RESULTS: At 2 weeks, there were no significant differences in histologically measured areas of newly formed bone among the groups. At 8 weeks, however, the CL + fix group exhibited a larger area of new bone (5.08 ± 1.09 mm2, mean ± standard deviation) compared to the NCL + unfix (1.62 ± 0.42 mm2; p < .0083), NCL + fix (3.97 ± 1.39 mm2) and CL + unfix (2.55 ± 1.04 mm2) groups. Additionally, the expression levels of tumour necrosis factor-alpha, fibroblast growth factor-2, vascular endothelial growth factor, osteocalcin and calcitonin receptor were significantly higher in the CL + fix group compared to the other three groups (p < .0083). CONCLUSION: Cross-linked bone blocks stabilized with collagen membrane fixation can significantly enhance GBR.

5.
ACS Appl Mater Interfaces ; 16(22): 28845-28852, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776522

ABSTRACT

Perovskites have made remarkable advancements in optoelectronics owing to their high light absorption coefficient, tunable bandgap, and long charge diffusion. Nonetheless, the practical applications of Pb-based perovskites have been hindered by the instability and toxicity of Pb, especially in flexible electronics, which require high biosecurity and low toxicity. Hence, the development of stable Pb-free perovskite materials has gained increasing attention. In this study, we synthesized stable CsBi3I10 Pb-free perovskites outside the glovebox and improved the optoelectronic and mechanical performances of the CsBi3I10-based flexible devices through polyvinylcarbazole (PVK) doping. Flexible photodetectors with the device structure of PET/ITO/PEDOT:PSS/CsBi3I10:PVK/Au was fabricated. The results indicated that the introduction of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) reduced the surface roughness of the flexible PET substrate, while PVK doping further improved the surface smoothness of CsBi3I10 thin films, thereby enhancing the interfacial charge transportation. Moreover, PEDOT:PSS and PVK acted as stepwise hole transport layers in the photodetectors. The device demonstrated a maximum responsivity of 0.3 A/W, detectivity of 2.6 × 1011 Jones, and a response time of 102 µs at 650 nm. After subjecting it to 1000 bending tests, the light current retained 80% of its initial value. This study presents a universally applicable method for controlling the surface morphology of a flexible perovskite thin film.

6.
Infect Drug Resist ; 17: 2053-2068, 2024.
Article in English | MEDLINE | ID: mdl-38813527

ABSTRACT

Purpose: Pseudomonas aeruginosa is a common causative bacteria in nosocomial infections. This study aims to describe the structure and evolutionary characteristics of mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) from P. aeruginosa and to conduct bioinformatics and comparative genomic analysis to provide a deeper understanding of the genetic characteristics and diversity of MGEs in P. aeruginosa. Methods: Fifteen clinical isolates of P. aeruginosa from China were collected and sequenced in this study, and 15 novel MGEs were identified. Together with four MGEs from GenBank, a total of 19 MGEs were used to perform detailed modular structure dissection and sequence comparison. Then, the biological experiments were carried out to verify the biological characteristics of these isolates and MEGs. Results: The novel MGEs identified in this study displayed diversification in modular structures, which showed complex mosaic natures. The seven types of 19 MGEs included in this study were divided into three groups: i) novel MGEs (firstly identified in this study): four IncpSE5381-aadB plasmids and three Tn7495-related integrative and mobilizable elements (IMEs); ii) newly defined MGEs (firstly designated in this study, but with previously determined sequences): four Tn7665-related IMEs; iii) novel transposons with reference prototypes identified in this study: two Tn6417-related integrative and conjugative elements (ICEs), two IS-based transposition units, two Tn501-related unit transposons, two Tn1403-related unit transposons. At least 36 ARGs involved in resistance to 11 different classes of antimicrobials and heavy metals were identified. Additionally, three novel blaOXA variants were identified. Antimicrobial susceptibility testing showed that these variants were resistant to some ß-lactamase antibiotics and blaOXA-1204 was additionally resistant to cephalosporins. Conclusion: The continuous evolution of ARG-carrying MGEs during transmission, leading to the emergence of novel MGEs or ARGs, which facilitates the spread of antibiotic resistance in P. aeruginosa and enhances the diversity of transmission modes of bacterial resistance.

7.
Reprod Sci ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653858

ABSTRACT

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder syndrome with an incidence of 6% to 10% in women of reproductive age. Women with PCOS not only exhibit abnormal follicular development and fertility disorders, but also have a greater tendency to develop anxiety and depression. Our aim was to evaluate the ability of inflammatory factors in follicular fluid to predict embryonic developmental potential and pregnancy outcome and to construct a machine learning model that can predict IVF pregnancy outcomes based on indicators such as basic sex hormones, embryonic morphology, the follicular microenvironment, and negative emotion. In this study, inflammatory factors (CRP, IL-6, and TNF-α) in follicular fluid samples obtained from 225 PCOS and 225 non-PCOS women were detected via ELISA. For patients with PCOS, the levels of CRP and IL-6 in the follicular fluid in the pregnant group were significantly lower than those in the nonpregnant group. For non-patients with PCOS, only the level of IL-6 in the follicular fluid was significantly lower in the pregnant group than in the nonpregnant group. In addition, for both PCOS and non-patients with PCOS, compared with those in the pregnant group, patients in the nonpregnant group showed more pronounced signs of anxiety and depression. Finally, the factors that were significantly different between the two subgroups (pregnancy and nonpregnancy) of patients with or without PCOS were identified by an independent sample t test first and further analysed by multilayer perceptron (MLP) and random forest (RF) models to distinguish the two clinical pregnancy outcomes according to the classification function. The accuracy of the RF model in predicting pregnancy outcomes in patients with or without PCOS was 95.6% and 91.1%, respectively. The RF model is more suitable than the MLP model for predicting pregnancy outcomes in IVF patients. This study not only identified inflammatory factors that can affect embryonic development and assessed the anxiety and depression tendencies of PCOS patients, but also constructed an AI model that predict pregnancy outcomes through machine learning methods, which is a beneficial clinical tool.

8.
Small ; : e2400142, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38676334

ABSTRACT

Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.

9.
Med Oncol ; 41(5): 120, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643333

ABSTRACT

Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.


Subject(s)
Adenine , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Demethylation , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
10.
mBio ; 15(5): e0017524, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38551343

ABSTRACT

Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.


Subject(s)
Antiviral Agents , Clinical Trials as Topic , Drug Development , Influenza, Human , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Orthomyxoviridae/drug effects , Zanamivir/pharmacology , Zanamivir/therapeutic use , Dibenzothiepins , Morpholines , Pyridones , Triazines
11.
Animals (Basel) ; 14(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38539961

ABSTRACT

Temperature and humidity, along with concentrations of ammonia and hydrogen sulfide, are critical environmental factors that significantly influence the growth and health of pigs within porcine habitats. The ability to accurately predict these environmental variables in pig houses is pivotal, as it provides crucial decision-making support for the precise and targeted regulation of the internal environmental conditions. This approach ensures an optimal living environment, essential for the well-being and healthy development of the pigs. The existing methodologies for forecasting environmental factors in pig houses are currently hampered by issues of low predictive accuracy and significant fluctuations in environmental conditions. To address these challenges in this study, a hybrid model incorporating the improved dung beetle algorithm (DBO), temporal convolutional networks (TCNs), and gated recurrent units (GRUs) is proposed for the prediction and optimization of environmental factors in pig barns. The model enhances the global search capability of DBO by introducing the Osprey Eagle optimization algorithm (OOA). The hybrid model uses the optimization capability of DBO to initially fit the time-series data of environmental factors, and subsequently combines the long-term dependence capture capability of TCNs and the non-linear sequence processing capability of GRUs to accurately predict the residuals of the DBO fit. In the prediction of ammonia concentration, the OTDBO-TCN-GRU model shows excellent performance with mean absolute error (MAE), mean square error (MSE), and coefficient of determination (R2) of 0.0474, 0.0039, and 0.9871, respectively. Compared with the DBO-TCN-GRU model, OTDBO-TCN-GRU achieves significant reductions of 37.2% and 66.7% in MAE and MSE, respectively, while the R2 value is improved by 2.5%. Compared with the OOA model, the OTDBO-TCN-GRU achieved 48.7% and 74.2% reductions in the MAE and MSE metrics, respectively, while the R2 value improved by 3.6%. In addition, the improved OTDBO-TCN-GRU model has a prediction error of less than 0.3 mg/m3 for environmental gases compared with other algorithms, and has less influence on sudden environmental changes, which shows the robustness and adaptability of the model for environmental prediction. Therefore, the OTDBO-TCN-GRU model, as proposed in this study, optimizes the predictive performance of environmental factor time series and offers substantial decision support for environmental control in pig houses.

12.
Biomacromolecules ; 25(4): 2587-2596, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38527924

ABSTRACT

In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-ß, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.


Subject(s)
Lacticaseibacillus rhamnosus , Wound Healing , Anti-Bacterial Agents/pharmacology , Cytokines , Escherichia coli , Hydrogels/pharmacology
14.
Menopause ; 31(3): 202-208, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38350045

ABSTRACT

OBJECTIVE: To examine whether vasomotor symptoms (VMS) and migraine headaches, hypothesized to be vasoactive conditions, are associated with greater risk for cardiovascular disease (CVD) events including strokes. METHODS: We performed a secondary data analysis of a subset of women (n = 1,954) in the Coronary Artery Risk Development in Young Adults (CARDIA) study, a population-based cohort, which began data collection at 18 to 30 y of age. We examined whether migraine headaches and VMS trajectories (characterized as minimal, increasing, and persistent) at CARDIA year 15 examination were associated with higher risk of CVD events and stroke (both ischemic and hemorrhagic) using Cox proportional hazards regression models and adjustment for traditional CVD risk factors (age, cigarette use, and levels of systolic and diastolic blood pressure, fasting glucose, high- and low-density cholesterol, and triglycerides) and reproductive factors. RESULTS: Among women with minimal VMS (n = 835), increasing VMS (n = 521), and persistent VMS (n = 598), there were 81 incident CVD events including 42 strokes. Women with histories of migraine and persistent VMS had greater risk of CVD (hazard ratio [HR], 2.25; 95% CI, 1.15-4.38) after adjustment for age, race, estrogen use, oophorectomy, and hysterectomy compared with women without migraine histories and with minimal/increasing VMS. After adjustment for CVD risk factors, these associations were attenuated (HR, 1.51; 95% CI, 0.73-3.10). Similarly, women with histories of migraine and persistent VMS had greater risk of stroke (HR, 3.15; 95% CI, 1.35-7.34), but these associations were attenuated after adjustment for CVD risk factors (HR, 1.70; 95% CI, 0.66-4.38). CONCLUSIONS: Migraines and persistent VMS jointly associate with greater risk for CVD and stroke, although risk is attenuated with adjustment for traditional CVD risk factors.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Migraine Disorders , Stroke , Humans , Female , Young Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Coronary Vessels , Risk Factors , Stroke/epidemiology , Stroke/etiology , Migraine Disorders/complications , Migraine Disorders/epidemiology
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 129-133, 2024 Feb 10.
Article in Chinese | MEDLINE | ID: mdl-38311548

ABSTRACT

OBJECTIVE: To explore the genetic basis of eighteen patients with Tetrahydrobiopterin deficiency (BH4D) from Gansu Province. METHODS: Eighteen patients diagnosed with BH4D at Gansu Provincial Maternal and Child Health Care Hospital from January 2018 to December 2021 were selected as the study subjects. Whole exome sequencing was carried out, and candidate variants were verified by Sanger sequencing. RESULTS: All of the thirty-six alleles of the eighteen patients were successfully determined by molecular genetic testing. Sixteen patients were found to harbor variants of the PTS gene, and two had harbored variants of the QDPR gene. Ten variants were detected in the PTS gene, with the most common ones being c.259C>T (34.38%) and c.286G>A (15.63%). Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.259C>T was classified as a pathogenic variant, whilst the c.286G>A, c.166G>A, c.200C>T, c.272A>G, c.402A>C, c.421G>T, c.84_291A>G and c.317C>T were classified as likely pathogenic variants. A novel c.289_290insCTT variant was classified as likely pathogenic (PM1+PM2_Supporting+PM3+PP3+PP4). The two variants (c.478C>T and c.665C>T) detected in the QDPR gene were both classified as variants of uncertain significance (PM1+PM2_Supporting+PP3+PP4). CONCLUSION: Genetic testing has clarified the pathogenic variants in these BH4D patients, which has enabled timely and accurate clinical intervention and treatment, and provided a reference for genetic counseling and reproductive guidance for their families.


Subject(s)
Phenylketonurias , Child , Humans , Alleles , Phenylketonurias/genetics , Family , Genetic Counseling , Genetic Testing , Mutation
16.
Menopause ; 31(2): 108-115, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38270902

ABSTRACT

OBJECTIVE: Previous studies have assessed potential risk factors for vasomotor symptoms (VMS) beginning in midlife. We examined whether early adulthood risk factors predict VMS trajectories over time. METHODS: We performed a secondary data analysis of the Coronary Artery Risk Development in Young Adults (CARDIA) study, a population-based cohort. We included women who answered questions about VMS at three or more examinations (n = 1,966). We examined whether risk factors at baseline (when participants were aged 18-30 y; average age, 25 y) and the year 15 (Y15) exam (at ages 33-45 y; average age, 40 y) were associated with VMS trajectories from Y15 through Y35. Logistic regression models were used to evaluate the associations with VMS trajectories. RESULTS: We identified three trajectories of VMS presence: minimal (40%), increasing over time (27%), and persistent (33%). Baseline factors associated with persistent VMS over time included Black race, less than a high school education, depressive symptoms, migraines, cigarette use, and at Y15 hysterectomy. Baseline factors associated with increasing VMS over time included Black race and lower body mass index. Risk factors for bothersome VMS were similar and also included thyroid disease, although thyroid disease was not associated with persistence of VMS over time. Associations were similar among women who had not undergone hysterectomy and in Black and White women. CONCLUSIONS: Risk factors for VMS may be identified in early adulthood. Further examination of risk factors such as migraines and depressive symptoms in early adulthood may be helpful in identifying therapies for VMS.


Subject(s)
Coronary Vessels , Migraine Disorders , Female , Young Adult , Humans , Adult , Prospective Studies , Heart , Risk Factors
17.
J Cell Physiol ; 239(4): e31189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219074

ABSTRACT

Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.


Subject(s)
ADP-Ribosylation Factors , Abnormalities, Multiple , Cerebellum , Eye Abnormalities , Kidney Diseases, Cystic , Retina , Humans , Abnormalities, Multiple/genetics , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cerebellum/abnormalities , Cilia/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Phosphoric Monoester Hydrolases/metabolism , Retina/metabolism , Retina/abnormalities , Male , Female , Infant
18.
Cell Host Microbe ; 32(2): 227-243.e6, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198925

ABSTRACT

Gene-environment interactions shape behavior and susceptibility to depression. However, little is known about the signaling pathways integrating genetic and environmental inputs to impact neurobehavioral outcomes. We report that gut G-protein-coupled receptor, Gpr35, engages a microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Psychological stress decreases intestinal epithelial Gpr35, genetic deletion of which induces depressive-like behavior in a microbiome-dependent manner. Gpr35-/- mice and individuals with depression have increased Parabacteroides distasonis, and its colonization to wild-type mice induces depression. Gpr35-/- and Parabacteroides distasonis-colonized mice show reduced indole-3-carboxaldehyde (IAld) and increased indole-3-lactate (ILA), which are produced from opposing branches along the bacterial catabolic pathway of tryptophan. IAld and ILA counteractively modulate neuroplasticity in the nucleus accumbens, a brain region linked to depression. IAld supplementation produces anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings elucidate a gut microbe-brain signaling mechanism that underlies susceptibility to depression.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Bacteroidetes , Brain , Gastrointestinal Microbiome/physiology
19.
Small ; : e2307115, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059744

ABSTRACT

The imbalance of charge injection is considered to be a major factor that limits the device performance of cadmium-free quantum-dot light-emitting diodes (QLEDs). In this work, high-performance cadmium-free Cu─In─Zn─S(CIZS)-based QLEDs are designed and fabricated through tailoring interfacial energy level alignment and improving the balance of charge injection. This is achieved by introducing a bilayered hole-injection layer (HIL) of Cu-doped NiOx (Cu─NiOx )/Poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS). High-quality Cu─NiOx film is prepared through a novel and straightforward sol-gel procedure. Multiple experimental characterizations and theoretical calculations show that the incorporation of Cu2+ ions can regulate the energy level structure of NiOx and enhance the hole mobility. The state-of-art CIZS-based QLEDs with Cu─NiOx /PEDOT:PSS bilayered HIL exhibit the maximum external quantum efficiency of 6.04% and half-life time of 48 min, which is 1.3 times and four times of the device with only PEDOT:PSS HIL. The work provides a new pathway for developing high-performance cadmium-free QLEDs.

20.
Emerg Microbes Infect ; 12(2): 2275596, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874004

ABSTRACT

Providencia as an opportunistic pathogen can cause serious infection, and moreover the emergence of multi-drug-resistant Providencia strains poses a potentially life-threatening risk to public health. However, a comprehensive genomic study to reveal the population structure and dissemination of Providencia is still lacking. In this study, we conducted a genomic epidemiology analysis on the 580 global sequenced Providencia isolates, including 257 ones sequenced in this study (42 ones were fully sequenced). We established a genome sequence-based species classification scheme for Providencia, redefining the conventional 11 Providencia species into seven genocomplexes that were further divided into 18 genospecies, providing an extensively updated reference for Providencia species discrimination based on the largest Providencia genome dataset to date. We then dissected the profile of antimicrobial resistance genes and the prevalence of multi-drug-resistant Providencia strains among these genocomplexes/genospecies, disclosing the presence of diverse and abundant antimicrobial resistance genes and high resistance ratios against multiple classes of drugs in Providencia. We further dissected the genetic basis for the spread of blaNDM-1 in Providencia. blaNDM-1 genes were mainly carried by five incompatible (Inc) groups of plasmids: IncC, IncW, IncpPROV114-NR, IncpCHS4.1-3, and IncpPrY2001, and the last three were newly designated in this study. By tracking the spread of blaNDM-1-carrying plasmids, IncC, IncpPROV114-NR, IncpCHS4.1-3, and IncpPrY2001 plasmids were found to be highly involved in parallel horizontal transfer or vertical clonal expansion of blaNDM-1 among Providencia. Overall, our study provided a comprehensive genomic view of species differentiation, antimicrobial resistance prevalence, and plasmid-mediated blaNDM-1 dissemination in Providencia.


Subject(s)
Anti-Bacterial Agents , Providencia , Providencia/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasmids/genetics , beta-Lactamases/genetics , Genomics , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...