Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Fitoterapia ; 176: 105998, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734212

ABSTRACT

Three Stemona alkaloids named stemotuberines A-C (1-3) with unique C17N frameworks, presumably formed by elimination of the C-11-C-15 lactone ring of the stichoneurine skeleton, were isolated from the roots of Stemona tuberosa. Their structures were elucidated by spectroscopic analysis, X-ray diffraction, and computational methods. Compounds 2 and 3 showed inhibition (IC50 values of 37.1 and 23.2 µM, respectively) against LPS-induced nitric oxide production in RAW 264.7 cells. In addition, concern was expressed about the reported plant origin (S. sessilifolia) of the recently described alkaloids tuberostemonols O-R (4-7), which should be S. tuberosa. NMR calculations indicated structural misassignment of these compounds except for 6. Isolation of tuberostemonol P (5) from our material of S. tuberosa allowed for a close examination of the spectroscopic data leading to the revised structure 5a. Tuberostemonol R (7) was found to have identical 1H and 13C NMR data to the well-known alkaloid croomine, and therefore its structure including relative stereochemistry must be revised as 7a.

2.
Biomed Pharmacother ; 173: 116262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394845

ABSTRACT

BACKGROUND: The glucose derivative 3-O-methyl-D-glucose (OMG) is used as a cryoprotectant in freezing cells. However, its protective role and the related mechanism in static cold storage (CS) of organs are unknown. The present study aimed to investigate the effect of OMG on cod ischemia damage in cold preservation of donor kidney. METHODS: Pretreatment of OMG on kidney was performed in an isolated renal cold storage model in rats. LDH activity in renal efflux was used to evaluate the cellular damage. Indicators including iron levels, mitochondrial damage, MDA level, and cellular apoptosis were measured. Kidney quality was assessed via a kidney transplantation (KTx) model in rats. The grafted animals were followed up for 7 days. Ischemia reperfusion (I/R) injury and inflammatory response were assessed by biochemical and histological analyses. RESULTS: OMG pretreatment alleviated prolonged CS-induced renal damage as evidenced by reduced LDH activities and tubular apoptosis. Kidney with pCS has significantly increased iron, MDA, and TUNEL+ cells, implying the increased ferroptosis, which has been partly inhibited by OMG. OMG pretreatment has improved the renal function (p <0.05) and prolonged the 7-day survival of the grafting recipients after KTx, as compared to the control group. OMG has significantly decreased inflammation and tubular damage after KTx, as evidenced by CD3-positive cells and TUNEL-positive cells. CONCLUSION: Our study demonstrated that OMG protected kidney against the prolonged cold ischemia-caused injuries through inhibiting ferroptosis. Our results suggested that OMG might have potential clinical application in cold preservation of donor kidney.


Subject(s)
Ferroptosis , Reperfusion Injury , Rats , Animals , 3-O-Methylglucose/pharmacology , Cold Ischemia/adverse effects , Organ Preservation/methods , Kidney , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Ischemia/pathology , Iron
3.
Food Funct ; 14(14): 6482-6495, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37366083

ABSTRACT

As a dietary supplement, hyaluronic acid (HA) has exhibited appreciable immunomodulatory activity and an ameliorative effect on rodent colitis. However, its high viscosity is not only refractory to absorb through the gut, but also causes flatulence. In contrast to HA, hyaluronic acid oligosaccharides (o-HAs) can overcome the above-mentioned constraints, but their treatment effect still remains ill-defined contemporarily. Herein, the current study intends to compare the modulatory effects of HA and o-HA on colitis and assess the underlying molecular mechanism. We first showed that o-HA had a better preventive effect than HA in alleviating colitis symptoms, as evidenced by lower body weight loss, lower disease activity index scores, a lower inflammatory response (TNF-α, IL-6, IL-1ß, p-NF-κB), and more intact colon epithelial integrity in vivo. The best efficiency was observed in the o-HA treated group with a dosage of 30 mg kg-1. In an in vitro barrier function assay, o-HA exerted a better protective effect on the transepithelial electrical resistance (TEER), FITC permeability, and wound healing and modulated the expression of tight junction (TJ) proteins (ZO-1, occludin) in lipopolysaccharide (LPS)-stimulated Caco-2 cells. In summary, both HA and o-HA showed the potential to reduce inflammation and ameliorate intestinal damage in DSS-induced colitis and LPS-induced inflammation, but o-HA had improved outcomes. The results also provided a glimpse of the latent mechanism by which HA and o-HA enhanced intestinal barrier function via MLCK/p-MLC signaling pathway suppression.


Subject(s)
Colitis , Hyaluronic Acid , Humans , Mice , Animals , Hyaluronic Acid/pharmacology , Caco-2 Cells , Intestinal Mucosa/metabolism , Lipopolysaccharides/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Tight Junction Proteins/metabolism , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
4.
Phytochemistry ; 209: 113621, 2023 May.
Article in English | MEDLINE | ID: mdl-36893826

ABSTRACT

The phytochemical investigation of the EtOAc extract from the aerial parts of Isodon eriocalyx afforded seventeen diterpenoids, including eight undescribed compounds. Eriocalyxins H-L have unique structural characteristics featuring a 5-epi-ent-kaurane diterpenoid scaffold with eriocalyxins H-K also possess an unusual 6,11-epoxyspiro-lactone ring while eriocalyxin L, a 1,7:3,20-diepoxy-ent kaurene, features an 1,7-oxygen linkage. The structures of these compounds were elucidated by spectroscopic data interpretation, and the absolute configurations of eriocalyxins H, I, L, and M were confirmed by single-crystal X-ray diffraction. The isolates were screened for their inhibitory activities against VCAM-1 and ICAM-1 at 5 µM. While eriocalyxin O, coetsoidin A and laxiflorin P were found to significantly inhibit both VCAM-1 and ICAM-1, 8 (17),13-ent-labdadien-15 â†’ 16-lactone-19-oic acid displayed evidently inhibitory effect against ICAM-1.


Subject(s)
Antineoplastic Agents, Phytogenic , Diterpenes, Kaurane , Diterpenes , Isodon , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/chemistry , Isodon/chemistry , Intercellular Adhesion Molecule-1/analysis , Vascular Cell Adhesion Molecule-1/analysis , Antineoplastic Agents, Phytogenic/chemistry , Diterpenes/chemistry , Plant Components, Aerial/chemistry , Molecular Structure , Drug Screening Assays, Antitumor
5.
Fitoterapia ; 167: 105473, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36931529

ABSTRACT

In this work we investigated the chemical constituents of water extract of the leaves of Cyclocarya paliurus. Two new megastigmane glycosides (3 and 8), three aliphatic alcohol glycosides (9-11), and two aromatic glycosides (12 and 13), along with fourteen known compounds were isolated, and their in vitro inhibitory activity against α-glucosidase was evaluated. Compounds 13 and 15-18 displayed inhibitory activity with IC50 values varying from 27.05 to 96.58 µM, and the structure-activity relationship among isolated compounds was discussed.


Subject(s)
Glycosides , alpha-Glucosidases , Glycosides/chemistry , alpha-Glucosidases/metabolism , Plant Extracts/chemistry , Water/analysis , Molecular Structure , Plant Leaves/chemistry
6.
Phytomedicine ; 106: 154403, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36075180

ABSTRACT

BACKGROUND: Previous studies reported that Aloe vera ameliorated DSS-induced colitis and promoted mucus secretion. However, the effect of Aloin A (AA), a major compound of Aloe vera, on colitis and its exact mechanism remains uncovered. METHODS: C57BL/6 mice were successively subjected to 3% DSS solution for 5 days and distilled water for 2 days. Concurrently, AA (25, 50 mg/kg) and 5-aminosalicylic (500 mg/kg) were administrated intragastrically from day 1 to day 7. Colitis was evaluated by disease active index (DAI), colon length, inflammation response, and intestinal barrier function. In vitro LS174T cells challenged with 50 ng/ml of lipopolysaccharides (LPS) were used to validate the modulatory action of AA on the Notch signaling pathway. RESULTS: Our results showed that oral administration with AA prominently prevented DSS-induced colitis symptoms in terms of decreased DAI, prevention of colon shortening, and reduced pathological damage. AA mitigated the inflammatory response evidenced by the decreased proinflammatory cytokines (TNF-α, IL-1ß, IL-6) and increased anti-inflammatory cytokine (IL-10). Besides, AA inhibited apoptosis and facilitated proliferation in colons. Moreover, AA treatment up-regulated the expression of tight junction (TJ) proteins (ZO-1, Occludin) and promoted the secretion of MUC2 to decrease colon permeability. Mechanistically, AA inhibited the Notch pathway to promote the secretion of MUC2, which was consistent with LPS-challenged LS174 cells. CONCLUSION: These results suggested that AA could prevent colitis by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Thus, AA might be a prospective remedy for ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/prevention & control , Colon/pathology , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Emodin/analogs & derivatives , Interleukin-10/metabolism , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Occludin/metabolism , Prospective Studies , Signal Transduction , Tight Junction Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Water
7.
Phytochemistry ; 204: 113434, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36169036

ABSTRACT

Cyclocarya paliurus, a Chinese herbal medicine and new food resource, contains a triterpenic-acid-rich extract that demonstrated ameliorative effect on diabetic nephropathy (DN). A more in-depth discovery of functional components led to the isolation of seven new triterpenoids including two pentacyclic triterpenes, 1α,2α,3ß,23-tetrahydroxyolean-12-en-28-oic acid and 2α,3ß,22α-tirhydroxyurs-12-en-28-oic acid 28-O-ß-D-glucopyranoside, and five tetracyclic triterpenoid glycosides (cypaliurusides N-R), together with twelve known compounds from the leaves of C. paliurus. Their structures were determined using a comprehensive analysis of chemical and spectroscopic data. Partial compounds were assessed for anti-fibrotic activities in high-glucose and TGF-ß1 induced HK-2 cells. Compound 16 remarkably decreased the level of fibronectin with an inhibition rate of 37.1%. Furthermore, 16 effectively alleviated the epithelial-mesenchymal transformation (EMT) process by upregulating E-cadherin expression and downregulating α-SMA expression, and it significantly decreased the level of the transcriptional inhibitors (Snail and Twist) of E-cadherin. The discovery of anti-fibrotic compounds from C. paliurus provides the potential utilization and functional candidates for the DN prevention.

8.
J Agric Food Chem ; 70(38): 11944-11957, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36120893

ABSTRACT

Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.


Subject(s)
Atherosclerosis , Saponins , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Cholesterol, LDL , Gynostemma/chemistry , Hydrogen , Intercellular Adhesion Molecule-1 , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proprotein Convertase 9 , Rats , Saponins/chemistry , Scavenger Receptors, Class E , Vascular Cell Adhesion Molecule-1
9.
J Nat Prod ; 85(8): 2110-2115, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35969376

ABSTRACT

The structural revision of four Stemona alkaloids from Stemona tuberosa is reported. The misassignment of the tuberostemonine O structure (1) was recognized when a new alkaloid, tuberostemonine P, was isolated and unambiguously assigned structure 1 in this work. Reinvestigation of the spectroscopic data and NMR calculations led to the revised structure 1a for tuberostemonine O. The structural misassignment of dehydrocroomine A as 2 was corrected by reinterpreting the X-ray crystal structure, which was consistent with 2a. The structural reassignments of dehydrocroomine B (3 to 3a) and dehydrocroomine (4 to 4a) were confirmed by X-ray crystallography and NMR calculations, respectively.


Subject(s)
Alkaloids , Stemonaceae , Alkaloids/chemistry , Molecular Structure , Stemonaceae/chemistry
10.
Food Funct ; 13(16): 8717-8729, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35916206

ABSTRACT

This study aimed to compare the effects of different hydrolysates (named GKOS and MKOS) on constipated rats, which were obtained by degradation from konjac glucomannan by ß-glucanase and ß-mannanase, respectively. GKOS and MKOS were characterized and administered by gavage at 100 mg kg-1 to constipated rats. The variation of the gut flora, content of short-chain fatty acids (SCFAs), defecation function, gastrointestinal motility, and intestinal mucus secretion were determined to evaluate their regulatory effects on constipation. The results revealed the more prominent augmentation of species richness in MKOS than with GKOS. They also possessed diverse modulatory effects on different genera, such as Prevotella and Parabacteroides. Unexpectedly, there was no statistical divergence between GKOS and MKOS in defecation parameters, gastrointestinal transit, serum parameters, and mucous secretion. Overall, MKOS and GKOS exhibited differential regulatory function on gut microbiota in vivo, but with nearly consistent therapeutic effects on constipation.


Subject(s)
Gastrointestinal Microbiome , Animals , Constipation , Feces , Mannans/pharmacology , Mannans/therapeutic use , Rats , beta-Mannosidase/metabolism , beta-Mannosidase/pharmacology
11.
Org Lett ; 24(25): 4684-4688, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35724994

ABSTRACT

Five Lycopodium alkaloids featuring novel C17N2 (1 and 2), C29N3 (3 and 4), and C15N2 (5) skeletons were isolated from Lycopodium japonicum. Compound 1 is the first natural product containing a 3-aza[3.3.3]propellane motif. The structures of these compounds were elucidated by spectroscopic analysis, X-ray crystallography, and computational methods. Compounds 1 and 3-5 significantly inhibited TGF-ß1-induced fibronectin deposition in HK-2 cells at a nontoxic concentration of 20 µM.


Subject(s)
Alkaloids , Lycopodium , Alkaloids/chemistry , Alkaloids/pharmacology , Crystallography, X-Ray , Fibrosis , Lycopodium/chemistry , Molecular Structure
12.
Food Funct ; 13(10): 5536-5546, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35531774

ABSTRACT

Diabetic nephropathy (DN) fibrosis is a major cause of end-stage renal disease with unsatisfactory therapy drugs and a low 5-year survival rate. There is a lack of specific and effective treatment drugs. In the present study, we report that asiatic acid (AA), a triterpenic acid found in Cyclocarya paliurus, has good anti-fibrosis activity both in vitro and in vivo. The STZ-induced diabetic model of rats was used to investigate the effects of AA on DN fibrosis. A 15-week AA treatment (10 mg kg-1 or 30 mg kg-1) markedly decreased urine albumin and blood urea nitrogen levels, and ameliorated increased mesangial matrix and glomerular fibrosis. HG + TGF-ß1-induced HK-2 cells were applied to evaluate the anti-fibrosis effect of AA. The results revealed AA selectively blocked the interaction of TGF-ß type I receptor (TGF-ßRI) with Smad3 by binding to TGF-ßRI, suppressed the subsequent phosphorylation and nuclear translocation of Smad3, and downregulated the major fibrotic protein expression of collagen I, fibronectin and a-smooth muscle actin (α-SMA), thereby switching the progress of epithelial-mesenchymal transition (EMT). Furthermore, the protein levels of LC3 and LAMP1 were significantly altered by AA administration, implying that the autophagy-lysosome system might be involved in DN fibrosis. However, the anti-fibrosis capacity of AA was partly counteracted by an autophagy-lysosome inhibitor (chloroquine). These findings indicate AA could decrease TGF-ß1 secretion and suppress tubulointerstitial fibrosis by directly inhibiting TGF-ßR1 and activating the autophagy-lysosome system. Altogether, AA may be a potential candidate drug for preventing DN fibrosis.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Juglandaceae , Animals , Autophagy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Lysosomes/metabolism , Pentacyclic Triterpenes , Rats , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
13.
J Ethnopharmacol ; 284: 114772, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34688801

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cyclocarya paliurus (CP) is a traditional Chinese herb and possesses a variety of biological activities including anti-hyperglycemia, anti-hyperlipidemia, antioxidant and anti-inflammation. Arjunolic acid (AA) is an abundant and bioactive ingredient in CP that shows significant protection against many metabolic diseases such as diabetic complication. Diabetic retinopathy (DR) is a serious complication of diabetes and may lead to vision loss. However, the protective effects and underlying mechanisms of AA against DR is not still understood. AIM OF THE STUDY: We aimed to investigate whether AA activates AMPK/mTOR/HO-1 regulated autophagy pathway to alleviate DR. MATERIALS AND METHODS: In the study, the STZ-induced diabetic model of rats was established, and AA with 10 and 30 mg/kg dosages was given orally for ten weeks to investigate their effect on retinal injury of DR. H2O2-induced ARPE-19 cells were applied to evaluate anti-apoptosis and anti-oxidant effect of AA. RESULTS: The results revealed that AA could prevent STZ-induced weight loss and increase the retinal thickness and nuclei counts. The level of HO-1 protein was upregulated both in vivo and in vitro. In addition, AA prevented retinal damage and cell apoptosis through the AMPK-mTOR-regulated autophagy pathway. Furthermore, anti-apoptosis capacity, as well as the expression of HO-1 and LC3 protein, were effectively locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C). CONCLUSIONS: This finding implies that AA may be a promising candidate drug by protecting retinal cells from STZ-induced oxidative stress and inflammation through the AMPK/mTOR/HO-1 regulated autophagy pathway.


Subject(s)
Adenylate Kinase/metabolism , Diabetic Retinopathy/drug therapy , Heme Oxygenase (Decyclizing)/metabolism , Juglandaceae/chemistry , TOR Serine-Threonine Kinases/metabolism , Triterpenes/therapeutic use , Adenylate Kinase/genetics , Animals , Autophagy/drug effects , Diabetes Mellitus, Experimental , Diabetic Retinopathy/metabolism , Gene Expression Regulation/drug effects , Heme Oxygenase (Decyclizing)/genetics , Male , Molecular Structure , Phytotherapy , Plant Extracts , Random Allocation , Rats , Rats, Sprague-Dawley , Triterpenes/chemistry
14.
Nat Prod Res ; 36(15): 3938-3944, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33719794

ABSTRACT

Two previously undescribed triterpenoids (1-2), along with thirteen known compounds (3-15) were isolated from a CHCl3-soluble extract of the leaves of Cyclocarya paliurus. Their structures were established on the basis of chemical and spectroscopic approaches. These compounds were assessed for their therapeutic effects on diabetic nephropathy (DN)-evoked fibrosis through High-Glucose and transforming growth factor-ß1 (TGF-ß1) challenged HK-2 cells. Among them, compounds 3, 5 and 8 could remarkedly decrease the level of fibronectin to relieve DN with 27.66 ± 2.77%, 6.09 ± 0.57% and 17.74 ± 5.83% inhibition rate at 10 µM, 10 µM and 1 µM, respectively.


Subject(s)
Juglandaceae , Triterpenes , Juglandaceae/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Triterpenes/chemistry
15.
Phytochemistry ; 194: 113005, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34798409

ABSTRACT

Seven undescribed dammarane-type saponins, gypenosides LXXXI-LXXXVII, together with four known compounds, were isolated from the whole herb of Gynostemma pentaphyllum. The chemical structures of these undescribed compounds were elucidated on the basis of physical and spectroscopic analysis and comparison with literature data. All the isolates were evaluated for their proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitory activities in HepG2 cells. Among them, gypenosides LXXXII-LXXXVII, gynosaponin II, IV and VI suppressed the expression of PCSK9 in LPDS-induced HepG2 cells at 20 µM; gypenosides LXXXII, LXXXV and LXXXVII showed inhibitory activities against PCSK9 at 10 µM; notably, gypenoside LXXXII still exhibited inhibitory activity against PCSK9 at 5 µM.


Subject(s)
Gynostemma/chemistry , PCSK9 Inhibitors/pharmacology , Saponins , Triterpenes/pharmacology , Hep G2 Cells , Humans , Proprotein Convertase 9 , Saponins/pharmacology , Dammaranes
16.
Bioorg Chem ; 116: 105357, 2021 11.
Article in English | MEDLINE | ID: mdl-34562675

ABSTRACT

Gynostemma pentaphyllum (Thunb.) Makino (Cucurbitaceae family) is a perennial creeping plant with a common Chinese name of "south ginseng". To date, more than 250 individual saponins with dammarane-type skeleton have been isolated from G. pentaphyllum. The purpose of this study was the isolation and structural characterization of novel, minor gypenosides from G. pentaphyllum and evaluation of their Sirt1 agonist activity. Individual saponins from G. pentaphyllum were isolated and purified by a variety of chromatography techniques, and their structures were elucidated by means of various spectroscopic analysis and comparision with the reported data. Sirt1 enzyme activity detection kit was used to preliminarily evaluate the Sirt1 agonist activity of thirty three individual saponins purified from G. pentaphyllum. Fourteen new triterpenoid saponins named gypenoside CII-CXV (1-14) along with twenty six known compounds (15-40) were isolated from G. pentaphyllum. Thirty three of all the isolates were screened for Sirt1 agonist activity, and the results showed that three dammarane-type saponins (2, 18, 37) and one cucurbitane-type saponin 33 exhibited satisfactory Sirt1 agonist activity. These findings suggested that G. pentaphyllum was worthy of further investigation to find small molecule Sirt1 agonist and facilitate their utilization as "south ginseng".


Subject(s)
Gynostemma/chemistry , Saponins/pharmacology , Sirtuin 1/metabolism , Triterpenes/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Saponins/chemistry , Saponins/isolation & purification , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification , Dammaranes
17.
Phytomedicine ; 91: 153688, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34380071

ABSTRACT

BACKGROUNDS: Atherosclerotic Cardiovascular Disease (ASCVD) is defined as ischemic or endothelial dysfunction-various inflammatory diseases, which is mainly caused by excessive low-density lipoprotein cholesterol (LDL-C) in circulating blood. Gynostemma pentaphyllum is a traditional Chinese medicine, and total Gypenosides are used for the treatment of hyperlipidemia and to reduce circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) level. However, which gypenoside involved in the modulation of PCSK9 expression is still unknown. PURPOSE: This study aimed to discover effective PCSK9 inhibitors from Gypenosides in accordance with the 2019 ESC/EAS guidelines. METHODS: HPLC was employed to determine major six components of Gypenosides. The inhibitory activity on secreted PCSK9 in HepG2 of six major compounds from Gypenosides were screened by ELISA. The level of low-density lipoprotein (LDL) receptor (LDLR) was determined by Flow cytometry and Immunofluorescence. The expression levels of PCSK9, LDLR and Sterol-regulatory element binding proteins-2 (SREBP-2) were analyzed by qPCR and Western blot. DiI-LDL was added to evaluated LDL uptake into HepG2. RESULTS: The results suggested that the mRNA and protein levels of PCSK9 were down-regulated by Gypenoside LVI and the LDLR degradation in lysosomes system was inhibited, thereby leading to an increasing in LDL uptake into HepG2 cells. Furthermore, Gypenoside LVI decreased PCSK9 expression induced by stains. Altogether, Gypenoside LVI enhances LDL uptake into HepG2 cells by increased LDLR level on cell-surface and suppressed PCSK9 expression. CONCLUSION: This indicates that Gypenoside LVI can be used as a useful supplement for statins in the treatment of hypercholesterolemia. This is firstly reported that monomeric compound of G. pentaphyllum planted in Hunan province has the effect of increasing LDL-C uptake in hepatocytes via inhibiting PCSK9 expression.


Subject(s)
Gynostemma , Proprotein Convertase 9 , Receptors, LDL/metabolism , Cholesterol, LDL , Gynostemma/chemistry , Hep G2 Cells , Hepatocytes/drug effects , Humans , Plant Extracts/pharmacology , Proprotein Convertase 9/metabolism
18.
Fitoterapia ; 154: 105003, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34333032

ABSTRACT

Four new C-11 monosaccharide attached dammarane triterpenoid glycosides cypaliurusides SV (1-4), along with nine known dammarane triterpenoid glycosides (5-13) were isolated from a CHCl3-soluble extract of the leaves of Cyclocarya paliurus. All characterized compounds were assayed for their cytotoxicities against HepG2 cells and 10 compounds were evaluated for the agonistic effects on sirtuin1 (SIRT1). The results showed that compounds 1, 5 and 6 were strongly cytotoxic in HepG2 cell line. Two dammarane triterpenoid glycosides 3 and 10 exhibited agonistic activities on SIRT1 with IC50 of 10 µM and 20 µM, respectively.


Subject(s)
Glycosides/pharmacology , Juglandaceae/chemistry , Sirtuin 1/drug effects , Triterpenes/pharmacology , China , Glycosides/isolation & purification , Hep G2 Cells , Humans , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves/chemistry , Triterpenes/isolation & purification , Dammaranes
19.
Bioorg Chem ; 111: 104843, 2021 06.
Article in English | MEDLINE | ID: mdl-33845383

ABSTRACT

Gynostemma pentaphyllum (Thunb.) Makino has a long history as food and diary supplement in China. At present, there are some products for hyperlipidemia in the market, including G. pentaphyllum tea, healthy wine and healthy food. In order to discover proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, fourteen new triterpenoid saponins named gypenoside LXXXVIII-CI (1-14) along with six known compounds (15-20) were isolated from G. pentaphyllum. Their structures were elucidated by means of various spectroscopic techniques. Eight isolates were evaluated the inhibitory effect on PCSK9 in HepG2 cells. The results showed that three dammarane-type glycosides (2, 3, 15) remarkably reduced PCSK9 expression at 10 µM concentration. These findings suggested that G. pentaphyllum was worthy of further investigation to find small molecule PCSK9 inhibitors and facilitate their utilization as functional food ingredients.


Subject(s)
Glycosides/pharmacology , Gynostemma/chemistry , Lipids/antagonists & inhibitors , PCSK9 Inhibitors , Triterpenes/pharmacology , Dose-Response Relationship, Drug , Glycosides/chemistry , Glycosides/isolation & purification , Hep G2 Cells , Humans , Molecular Structure , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification , Tumor Cells, Cultured , Dammaranes
20.
Phytochemistry ; 186: 112711, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33711738

ABSTRACT

Ten undescribed anthranoids, including three anthraquinone acetals as racemic mixtures, (±)-kenganthranol G-I, and seven prenylated anthranols, (±)-kenganthranol J-M and harunganol G-I, together with thirteen known compounds, were isolated from the stem bark of Harungana madagascariensis. The structures of (±)-kenganthranol G and (±)-kenganthranol J were confirmed by X-ray crystallography. (±)-Kenganthranol G was separated into (+)-kenganthranol G and (-)-kenganthranol G by chiral HPLC and their absolute configurations were established by electronic circular dichroism. (±)-Kenganthranol L displayed α-glucosidase inhibitory activity with an IC50 of 4.4 µM.


Subject(s)
Clusiaceae , Anthraquinones , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...