Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 130: 155668, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38776739

ABSTRACT

BACKGROUND: Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE: Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS: High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS: The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS: These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.

2.
Int Arch Allergy Immunol ; 185(2): 142-151, 2024.
Article in English | MEDLINE | ID: mdl-37926086

ABSTRACT

INTRODUCTION: The incidence of allergic diseases has increased globally, with genetics playing an essential role in these conditions' development. However, there is still a gap in understanding of how parental allergy status affects children's allergies. METHODS: An electronic questionnaire was used to assess allergy-related symptoms in kindergarten children and their parents, with a clinical diagnosis and concurrent serum allergen-specific immunoglobulin E (IgE), total IgE, and blood cell counts obtained. RESULTS: 88 family groups were enrolled, with allergy prevalence of 85.2% in children, 50% in fathers, and 42% in mothers. Allergic rhinoconjunctivitis was the most common allergic disease. When the mother had an allergy, the children's allergy diagnosis rate was 91.3%; 86.67% when the father had an allergy; and 85.71% when both parents had allergies. The child sensitization rate was 78.26% when the father had sensitization, 59.09% just as the mother had sensitization, and 84.21% when both parents had sensitization. Paternal allergies affected children's quality of life due to allergic rhinitis but not their rhinitis symptoms. Maternal allergies or sensitization did not significantly affect children's symptoms or quality-of-life scores. CONCLUSION: The study found a positive correlation between childhood and parental allergies, and further studies are needed to confirm the findings.


Subject(s)
Rhinitis, Allergic , Rhinitis , Child , Female , Humans , Quality of Life , Parents , Rhinitis/epidemiology , Rhinitis, Allergic/epidemiology , Immunoglobulin E
3.
Sci China Life Sci ; 66(11): 2663-2679, 2023 11.
Article in English | MEDLINE | ID: mdl-37233873

ABSTRACT

The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.


Subject(s)
Ascomycota , Nematoda , Animals , Histones/genetics , Histones/metabolism , Nematoda/genetics , Nematoda/microbiology , Ascomycota/physiology , Transcription Factors/metabolism , Methyltransferases
4.
Front Microbiol ; 14: 1128064, 2023.
Article in English | MEDLINE | ID: mdl-37089553

ABSTRACT

Gas production from several metabolic pathways is a necessary process that accompanies the growth and central metabolism of some microorganisms. However, accurate and rapid nondestructive detection of gas production is still challenging. To this end, gas chromatography (GC) is primarily used, which requires sampling and sample preparation. Furthermore, GC is expensive and difficult to operate. Several researchers working on microbial gases are looking forward to a new method to accurately capture the gas trends within a closed system in real-time. In this study, we developed a precise quantitative analysis for headspace gas in Hungate tubes using Raman spectroscopy. This method requires only a controlled focus on the gas portion inside Hungate tubes, enabling nondestructive, real-time, continuous monitoring without the need for sampling. The peak area ratio was selected to establish a calibration curve with nine different CH4-N2 gaseous mixtures and a linear relationship was observed between the peak area ratio of methane to nitrogen and their molar ratios (A(CH4)/A(N2) = 6.0739 × n(CH4)/n(N2)). The results of in situ quantitative analysis using Raman spectroscopy showed good agreement with those of GC in the continuous monitoring of culture experiments of a deep-sea cold seep methanogenic archaeon. This method significantly improves the detection efficiency and shows great potential for in situ quantitative gas detection in microbiology. It can be a powerful complementary tool to GC.

5.
J Med Chem ; 66(8): 5753-5773, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37057760

ABSTRACT

The feedback activation of the Janus kinase (JAK)-STAT pathway leads to the fact that solid cancers are not sensitive to histone deacetylase (HDAC) inhibitors. Herein, a series of novel 2-amino-4-phenylaminopyrimidine JAK/HDAC dual-target inhibitors based on the moiety of fedratinib were designed and synthesized. Among them, 21 and 30 potently inhibited HDAC3/6 and JAK1/2 at nanomolar levels and exhibited splendid selectivity for the JAK2 against a panel of 76 kinases. 21 and 30 presented remarkable antiproliferative activity in both hematological malignancies and solid cancers, which was endorsed by JAK-STAT and HDAC pathway blockade and proapoptotic activity. On the basis of great plasma stability and oral bioavailability, 21 and 30 effectively suppressed the tumor growth of HEL and A549 xenograft models. Collectively, the above results validate that JAK/HDAC dual-target inhibitors provide valuable clues for targeted treatment of hematological malignancies and solid cancers.


Subject(s)
Hematologic Neoplasms , Janus Kinase Inhibitors , Neoplasms , Humans , Janus Kinases , Histone Deacetylase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Janus Kinase 2 , Janus Kinase 1 , Neoplasms/metabolism , Histone Deacetylases
6.
EMBO J ; 42(12): e112514, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36946144

ABSTRACT

Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.


Subject(s)
Proteomics , Thiosulfates , Thiosulfates/metabolism , Bacteria/metabolism , Oxidation-Reduction , Sulfur/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Microbiol Spectr ; : e0367822, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36809047

ABSTRACT

As microbial sulfur metabolism significantly contributes to the formation and cycling of deep-sea sulfur, studying their sulfur metabolism is important for understanding the deep-sea sulfur cycle. However, conventional methods are limited in near real-time studies of bacterial metabolism. Recently, Raman spectroscopy has been widely used in studies on biological metabolism due to its low-cost, rapid, label-free, and nondestructive features, providing us with new approaches to solve the above limitation. Here, we used the confocal Raman quantitative 3D imaging method to nondestructively detect the growth and metabolism of Erythrobacter flavus 21-3 in the long term and near real time, which possessed a pathway mediating the formation of elemental sulfur in the deep sea, but the dynamic process was unknown. In this study, its dynamic sulfur metabolism was visualized and quantitatively assessed in near real time using 3D imaging and related calculations. Based on 3D imaging, the growth and metabolism of microbial colonies growing under both hyperoxic and hypoxic conditions were quantified by volume calculation and ratio analysis. Additionally, unprecedented details of growth and metabolism were uncovered by this method. Due to this successful application, this method is potentially significant for analyzing the in situ biological processes of microorganisms in the future. IMPORTANCE Microorganisms contribute significantly to the formation of deep-sea elemental sulfur, so studies on their growth and dynamic sulfur metabolism are important to understand the deep-sea sulfur cycle. However, near real-time in situ nondestructive metabolic studies of microorganisms remain a great challenge due to the limitations of existing methods. We thus used an imaging-related workflow by confocal Raman microscopy. More detailed descriptions of the sulfur metabolism of E. flavus 21-3 were disclosed, which perfectly complemented previous research results. Therefore, this method is potentially significant for analyzing the in-situ biological processes of microorganisms in the future. To our knowledge, this is the first label-free and nondestructive in situ technique that can provide temporally persistent 3D visualization and quantitative information about bacteria.

8.
Environ Sci Technol ; 56(16): 11835-11844, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35905396

ABSTRACT

Mercury (Hg) is a ubiquitous contaminant in the environment and its methylated form, methylmercury (MeHg), poses a worldwide health concern for humans and wildlife, primarily through fish consumption. Global production of forest fire ash, derived from wildfires and prescribed burns, is rapidly increasing due to a warming climate, but their interactions with aqueous and sedimentary Hg are poorly understood. Herein, we compared the differences of wildfire ash with activated carbon and biochar on the sorption of aqueous inorganic Hg and sedimentary Hg methylation. Sorption of aqueous inorganic Hg was greatest for wildfire ash materials (up to 0.21 µg g-1 or 2.2 µg g-1 C) among all of the solid sorbents evaluated. A similar Hg adsorption mechanism for activated carbon, biochar made of walnut, and wildfire ash was found that involves the formation of complexes between Hg and oxygen-containing functional groups, especially the -COO group. Notably, increasing dissolved organic matter from 2.4 to 70 mg C L-1 remarkably reduced Hg sorption (up to 40% reduction) and increased the time required to reach Hg-sorbent pseudo-equilibrium. Surprisingly, biochar and wildfire ash, but not activated carbon, stimulated MeHg production during anoxic sediment incubation, possibly due to the release of labile organic matter. Overall, our study indicates that while wildfire ash can sequester aqueous Hg, the leaching of its labile organic matter may promote production of toxic MeHg in anoxic sediments, which has an important implication for potential MeHg contamination in downstream aquatic ecosystems after wildfires.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Wildfires , Animals , Ecosystem , Geologic Sediments , Humans , Mercury/analysis , Water Pollutants, Chemical/analysis
9.
Eur J Med Chem ; 233: 114231, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35247755

ABSTRACT

Chemotherapy is an important means of cancer treatment. However, overexpression of efflux transporters (including but not limited to P-gp and BCRP) can lead to resistance to cancer chemotherapy. Multiple-target inhibitors of efflux transporter can be overcome the resistance and improve the oral bioavailability of chemotherapy drugs. Therefore, we designed and synthesized a series of phthalazinone ring derivatives (1-20) with different aromatic heterocycles substituents on the amide bond for dual inhibition of P-gp and BCRP. Most target compounds significantly increased the accumulation of P-gp substrates in the chemo-resistant cancer cell lines by inhibiting the efflux of transporters. Compound 19 in particular showed stronger MDR reversal compared to Gefitinib and Verapamil, and comparable to that of the BCRP inhibitor Ko143. In addition, compound 19 improved intestinal absorption of paclitaxel (PTX) and enhanced the bioavailability of the orally administered drug in vivo.


Subject(s)
Neoplasms , Paclitaxel , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Paclitaxel/pharmacology , Paclitaxel/therapeutic use
10.
J Biomed Nanotechnol ; 17(8): 1654-1667, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34544542

ABSTRACT

Oxidized low density lipoprotein (Ox-LDL) is a known biomarker of inflammation and atherosclerosis, a leading cause of death worldwide. As a new class of nanomaterials, carbon nanodots (CNDs) are widely used in bioimaging, diagnostics, and drug delivery. However, there is no current report on how these CNDs affect the cardiovascular system, particularly their potential in mediating endothelial inflammatory dysfunction. This study examined effects of CNDs on Ox-LDL-mediated endothelial dysfunction. CNDs significantly inhibited Ox-LDL-mediated adhesion of monocytes to human microvascular endothelial cells (HMEC-1), in human microvascular endothelial cells (HMEC-1). CNDs significantly inhibited Ox-LDL-mediated adhesion of monocytes to endothelial cells, which is an essential step in the development of atherosclerosis. Further, CNDs significantly inhibited OxLDL-induced expression of interleukin-8 (IL-8), a vital cytokine on monocyte adhesion to the endothelial cells. These results demonstrate CNDs possess anti-inflammatory properties. CNDs also protect cells against Ox-LDL-induced cytotoxicity. Electron paramagnetic resonance (EPR) spectroscopy studies demonstrated direct reactive oxygen species-scavenging by CNDs. This result indicates that the anti-inflammatory properties of CNDs are most likely due to their direct scavenging of reactive oxygen species. Animal studies involving mice did not show any morphological or physical changes between the CNDs and control groups. Our study provides evidence of potential of CNDs in reducing Ox-LDL-mediated inflammation and cytotoxicity in HMEC-1.


Subject(s)
Endothelial Cells , Monocytes , Animals , Carbon , Lipoproteins, LDL , Mice , Reactive Oxygen Species
11.
Biomater Sci ; 9(14): 5045-5056, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34127999

ABSTRACT

Amphiphilic phospholipid-iodinated polymer conjugates were designed and synthesized as new macromolecular probes for a highly radiopaque and biocompatible imaging technology. Bioconjugation of PEG 2000-phospholipids and iodinated polyesters by click chemistry created amphiphilic moieties with hydrophobic polyesters and hydrophilic PEG units, which allowed their self-assemblies into vesicles or spiked vesicles. More importantly, the conjugates exhibited high radiopacity and biocompatibility in in vitro X-ray and cell viability measurements. This new type of bioimaging contrast agent with a Mn value of 11 289 g mol-1 was found to have a significant X-ray signal at 3.13 mg mL-1 of iodine equivalent than baseline and no cytotoxicity after 48 hours incubation of with HEK and 3T3 cells at 20 µM (20 picomoles) concentration of conjugates per well. The potential of adopting the described macromolecular probes for bioimaging was demonstrated, which could further promote the development of a field-friendly and highly sensitive bioimaging contrast agent for point-of-care diagnostic applications.


Subject(s)
Phospholipids , Polymers , Animals , Contrast Media , Hydrophobic and Hydrophilic Interactions , Mice , Polyesters , Polyethylene Glycols
12.
Front Microbiol ; 12: 638617, 2021.
Article in English | MEDLINE | ID: mdl-33995298

ABSTRACT

For decades, more and more long non-coding RNAs (lncRNAs) have been confirmed to play important functions in key biological processes of different organisms. At present, most identified lncRNAs and those with known functional roles are from mammalian systems. However, lncRNAs have also been found in primitive eukaryotic fungi, and they have different functions in fungal development, metabolism, and pathogenicity. In this review, we highlight some recent researches on lncRNAs in the primitive eukaryotic fungi, particularly focusing on the identification of lncRNAs and their regulatory roles in diverse biological processes.

13.
Environ Sci Pollut Res Int ; 28(36): 49880-49888, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33948833

ABSTRACT

A new strategy for the wastewater treatment was proposed by combining polyvinylpyrrolidone-functionalized silver nanoparticles with reduced graphene oxide (AgNPs-PVP@rGO) as a visible light-triggered photoactive nanocomposite. The nanocomposite with enhanced photocatalytic degradation and photothermal antibacterial activity can simultaneously decrease the content of organic pollutants and bacteria in the wastewater under visible light irradiation. The efficiency of photocatalytic degradation can be significantly improved by the conjugation of AgNPs onto the rGO surface. The water solubility and dispersion of nanocomposite can be increased via PVP functionalization, without stirring during the photocatalytic process. Under the optimal synthesis condition, AgNPs-PVP@rGO has a photocatalytic degradation efficiency of 90.1% for rhodamine B, which is 6.9 and 1.8 times higher than that of polyvinylpyrrolidone-functionalized silver nanoparticles and rGO alone, respectively. More importantly, the degradation efficiency of optimal AgNPs-PVP@rGO sol on rhodamine B is significantly higher than that of its block suspension in the same amount, indicating that the sol with more specific surface area is conducive to the photocatalytic reaction. Meanwhile, the AgNPs-PVP@rGO with excellent photothermal activity can effectively inhibit the bacterial growth. This functional modification of graphene provides a new strategy for simultaneous treatment of multiple pollutants in wastewater. The AgNPs-PVP@rGO nanocomposites for simultaneous enhanced photocatalytic degradation and photothermal antibacterial activity by visible light.


Subject(s)
Graphite , Metal Nanoparticles , Nanocomposites , Anti-Bacterial Agents/pharmacology , Light , Silver
14.
J Med Chem ; 64(9): 6179-6197, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33938746

ABSTRACT

Overexpression of ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), is an important factor leading to multidrug resistance (MDR) in cancer treatments. Three subclasses of dual inhibitors of P-gp and BCRP were designed based on the active moieties of BCRP inhibitors, tyrosine kinase inhibitors, and P-gp inhibitors, of which compound 21 possessed low cytotoxicity, high reversal potency, and good lipid distribution coefficient. 21 also increased the accumulation of Adriamycin (ADM) and Mitoxantrone (MX), blocked Rh123 efflux, and made no change in the protein expression of P-gp and BCRP. Importantly, coadministration of 21 can significantly improve the oral bioavailability of paclitaxel (PTX). It was also demonstrated that 21 significantly inhibited the growth of K562/A02 xenograft tumors by increasing the sensitivity of ADM in vivo. In summary, 21 has the potential to overcome MDR caused by P-gp and BCRP and to improve the oral bioavailability of PTX.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Benzene/chemistry , Benzene/pharmacology , Drug Design , Drug Resistance, Multiple/drug effects , Neoplasm Proteins/metabolism , Pyrimidines/chemistry , Administration, Oral , Animals , Benzene/administration & dosage , Biological Availability , Drug Interactions , Humans , K562 Cells , Mice , Paclitaxel/pharmacokinetics , Xenograft Model Antitumor Assays
15.
Nanomaterials (Basel) ; 11(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925858

ABSTRACT

Atherosclerosis represents an ever-present global concern, as it is a leading cause of cardiovascular disease and an immense public welfare issue. Macrophages play a key role in the onset of the disease state and are popular targets in vascular research and therapeutic treatment. Carbon nanodots (CNDs) represent a type of carbon-based nanomaterial and have garnered attention in recent years for potential in biomedical applications. This investigation serves as a foremost attempt at characterizing the interplay between macrophages and CNDs. We have employed THP-1 monocyte-derived macrophages as our target cell line representing primary macrophages in the human body. Our results showcase that CNDs are non-toxic at a variety of doses. THP-1 monocytes were differentiated into macrophages by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) and co-treatment with 0.1 mg/mL CNDs. This co-treatment significantly increased the expression of CD 206 and CD 68 (key receptors involved in phagocytosis) and increased the expression of CCL2 (a monocyte chemoattractant and pro-inflammatory cytokine). The phagocytic activity of THP-1 monocyte-derived macrophages co-treated with 0.1 mg/mL CNDs also showed a significant increase. Furthermore, this study also examined potential entrance routes of CNDs into macrophages. We have demonstrated an inhibition in the uptake of CNDs in macrophages treated with nocodazole (microtubule disruptor), N-phenylanthranilic acid (chloride channel blocker), and mercury chloride (aquaporin channel inhibitor). Collectively, this research provides evidence that CNDs cause functional changes in macrophages and indicates a variety of potential entrance routes.

16.
Chem Sci ; 11(24): 6297-6304, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32953025

ABSTRACT

Metal oxides are widely used in different fields, including photoelectrocatalysis, photocatalysis, dye-sensitized solar cells, photoinduced superhydrophilicity and so on. It is well-known that there are intrinsic hydrated layers on the surfaces of metal oxides in ambient air or the electrolyte. Generally, interface layers between metal oxides and solutions have significant effects on the performances in these applications. However, the exact roles of the intrinsic hydrated layers are still unclear. In this study, taking TiO2 and Fe2O3 as model materials, we propose a mild heat treatment to increase the hydroxyl concentration in the hydrated surface layers of the oxides, which improves their photoelectrochemical performance remarkably. Moreover, we find that the heat-regulated hydrated layer plays the role of a hole transfer mediator between oxides and the electrolyte, which can accelerate both interface charge collection and oxygen evolution reaction kinetics in acidic solution. The new insights into the intrinsic hydrated interface layer on oxides can offer guidance not only in photoelectrocatalysis, but also in the other applications mentioned above.

17.
Langmuir ; 36(29): 8632-8640, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32610019

ABSTRACT

Carbon nanodots (CNDs), reported as polyatomic carbon domains surrounded by amorphous carbon frames, have drawn extensive attention due to their easy-to-synthesis, outstanding electronic properties, and superior biocompatibility. However, substantial assessments regarding their biological performance are still needed, considering the complex nature of this type of relatively new nanoparticles. In this report, CNDs derived from urea and citric acid (U-CNDs) are investigated in the treatment of two cell lines, EA.hy926 and A549 cells, to examine the biocompatibility, cellular uptake, and antioxidation effect. The intracellular uptake study suggests an energy-dependent transport process into the cells mainly involving macropinocytosis and lipid raft-mediated endocytosis pathways. Moreover, the U-CNDs mostly target the mitochondria and present strong antioxidative effects by scavenging reactive oxygen species (ROS) in cells. Overall the findings in this report manifest that the U-CNDs could serve as a bioimaging reagent and antioxidant causing little deleteriousness in the respects of viability, plasma membrane integrity, and mitochondrial activity in both cell lines, and demonstrate some efficacy for inhibiting the metabolic activities of A549 cancer cells at higher concentration.


Subject(s)
Carbon , Nanoparticles , Antioxidants/toxicity , Citric Acid , Nanoparticles/toxicity , Urea
18.
ACS Appl Bio Mater ; 3(12): 8776-8785, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019553

ABSTRACT

Despite the potential health benefits of curcumin, such as antioxidant, anticancer, anti-inflammatory, and antimicrobial properties, its usage is limited by poor bioavailability and low aqueous solubility. Nano-formulations of curcumin have gained a lot of attention due to their increased bioavailability, solubility, circulation times, targeted specificity, decreased biodegradation, better stability, and improved cellular uptake. The current study aimed to enhance the bioavailability of curcumin using carbon nanodots (CNDs) as loading vehicles to deliver curcumin due to their excellent biocompatibility, aqueous solubility, and photoluminescence properties. Two types of CNDs (E-CNDs and U-CNDs) were used for curcumin loading and characterized for particle size, morphology, loading capability (measured as adsorption efficiency and loading capacity), stability, photoluminescence properties, in vitro drug release studies, cellular uptake, and anticancer activity. The prepared curcumin-loading CNDs (Curc-CNDs) displayed sizes around or below 10 nm with good stability. The Curc-E-CNDs demonstrated a curcumin adsorption efficiency of 91% in solution, while the Curc-U-CNDs have an adsorption efficiency of 82%. Both have a loading capacity of 3.4-3.8% with respect to the weight of the CNDs. Curcumin release followed a controlled sustained pattern that a total of 60% and 74% of curcumin was released at 72 h from Curc-E-CNDs and Curc-U-CNDs, respectively, in pH 5 buffer, and almost 90% was released in culture media within 96 h. Both of the Curc-CNDs were uptaken by cells and exhibited prominent cytotoxicity toward cancer cells. The results clearly depict the role of CNDs as efficient carriers for curcumin delivery with prolonged release and enhanced bioavailability, thereby improving the overall antitumor activity.

19.
Molecules ; 24(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609752

ABSTRACT

Carbon nanodots (CNDs) have shown good antioxidant capabilities by scavenging oxidant free radicals such as diphenyl-1-picrylhydrazyl radical (DPPH•) and reactive oxygen species. While some studies suggest that the antioxidation activities associate to the proton donor role of surface active groups like carboxyl groups (⁻COOH), it is unclear how exactly the extent of oxidant scavenging potential and its related mechanisms are influenced by functional groups on CNDs' surfaces. In this work, carboxyl and the amino functional groups on CNDs' surfaces are modified to investigate the individual influence of intermolecular interactions with DPPH• free radical by UV-Vis spectroscopy and electrochemistry. The results suggest that both the carboxyl and the amino groups contribute to the antioxidation activity of CNDs through either a direct or indirect hydrogen atom transfer reaction with DPPH•.


Subject(s)
Antioxidants/chemistry , Carbon/chemistry , Nanoparticles/chemistry , Amines/chemistry , Biphenyl Compounds/chemistry , Carboxylic Acids/chemistry , Free Radicals/chemistry , Particle Size , Picrates/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...