Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10316-10324, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38381062

ABSTRACT

Given the requirements for power and dimension scaling, modulating channel transport properties using high gate bias is unfavorable due to the introduction of severe leakages and large power dissipation. Hence, this work presents an ultrathin phototransistor with chemical-vapor-deposition-grown monolayer MoS2 as the channel and a 10.2 nm thick Al:HfO2 ferroelectric film as the dielectric. The proposed device is meticulously modulated utilizing an Al:HfO2 nanofilm, which passivates traps and suppresses charge Coulomb scattering with Al doping, efficiently improving carrier transport and inhibiting leakage current. Furthermore, a bipolar pulses excitable polarization method is developed to induce a nonvolatile electrostatic field. The MoS2 channel is fully depleted by the switchable and stable floating gate originating from remanent polarization, leading to a high detectivity of 2.05 × 1011 Jones per nanometer of gating layer (Jones nm-1) and photocurrent on/off ratio >104 nm-1, which are superior to the state-of-the-art phototransistors based on two-dimensional (2D) materials and ferroelectrics. The proposed polarizable nonvolatile ferroelectric gating in a monolayer MoS2 phototransistor promises a potential route toward ultrasensitive photodetectors with low power consumption that boast of high levels of integration.

2.
Nanoscale Horiz ; 8(12): 1695-1699, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37698845

ABSTRACT

Defect sites present on the surface of catalysts serve a crucial role in different catalytic processes. Herein, we have investigated defect engineering within a hybrid system composed of "soft" polymer catalysts and "hard" metal nanoparticles, employing the disparity in their thermal expansions. Electron paramagnetic resonance, X-ray photoelectron spectroscopy, and mechanistic studies together reveal the formation of new abundant defects and their synergistic integrability with plasmonic enhancement within the hybrid catalyst. These active defects, co-localized with plasmonic Ag nanoparticles, promote the utilization efficiency of hot electrons generated by local plasmons, thereby enhancing the CO2 photoreduction activity while maintaining the high catalytic selectivity.

3.
Nanoscale ; 15(39): 15994-16001, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37766512

ABSTRACT

Graphene is one of the most potential field emission cathode materials and a lot of work has been carried out to demonstrate the effectiveness of nitrogen doping (N doping) for the enhancement of field emission properties of graphene. However, the effect of N doping on graphene field emission is lacking systematic and thorough understanding. In this study, undoped graphene and N-doped graphene were prepared and characterized for measurements, and the field emission property dependence of the doping content was investigated and the tuneable effect was discussed. For the undoped graphene, the turn-on field was 7.95 V µm-1 and the current density was 7.3 µA cm-2, and for the 10 mg, 20 mg, and 30 mg N-doped graphene samples, the turn-on fields declined to 7.50 V µm-1, 6.38 V µm-1, and 7.28 V µm-1, and current densities increased to 21.0 µA cm-2, 42.6 µA cm-2, and 13.2 µA cm-2, respectively. Density functional theory (DFT) calculations revealed that N doping could bring about additional charge and then cause charge aggregation around the N atom. At the same time, it also lowered the work function, which further enhanced the field emission. The doping effect was determined by the content of the pyrrolic-type N and pyridinic-type N. Pyridinic-type N is more favourable for field emission because of its smaller work function, which is in good agreement with the experimental results. This study would be of great benefit to the understanding of N doping modulation for superior field emission properties.

4.
Nanoscale ; 15(28): 11898-11908, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37409623

ABSTRACT

While researchers often adopt a higher operating voltage to further enlarge the actual specific capacity of LCO to expand its application scope and market share, this triggers some more intractable issues in that the capacity decays obviously and causes the attendant problem of safety. Li3PO4 shows the advantage of increasing the energy density of lithium-ion batteries due to its characteristic ionic conduction when coated onto an LCO cathode. Enhancing the conductivity of cathode materials is the key factor in the success of raising their operating voltage to meet emerging market demands. Here, we report a direct facile coprecipitation method for coating crystalized Li3PO4 onto an LCO surface that enables balancing the ionic conductivity and chemical stability. LCO@ Li3PO4 crystalline lithium phosphate can generate superior electrical contact with the cathode material for high capacity and effectively stabilize the cathode surface by reducing the formation of SEI/CEI to prolong the cycle life. The optimized LP-3 cathode can deliver a high initial discharge capacity of 181 mA h g-1 at 0.5C, with a capacity retention of 75% after 200 cycles. This study introduces a competitive strategy to produce a high-voltage LCO cathode via the most viable and economical method.

5.
Adv Sci (Weinh) ; 10(21): e2300952, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178366

ABSTRACT

Two-dimensional transition metal dichalcogenides (2D TMDs) present promising applications in various fields such as electronics, optoelectronics, memory devices, batteries, superconductors, and hydrogen evolution reactions due to their regulable energy band structures and unique properties. For emerging spintronics applications, materials with excellent room-temperature ferromagnetism are required. Although most transition metal compounds do not possess room-temperature ferromagnetism on their own, they are widely modified by researchers using the emerging strategies to engineer or modulate their intrinsic properties. This paper reviews recent enhancement approaches to induce magnetism in 2D TMDs, mainly using doping, vacancy defects, composite of heterostructures, phase modulation, and adsorption, and also by electron irradiation induction, O plasma treatment, etc. On this basis, the produced effects of these methods for the introduction of magnetism into 2D TMDs are compressively summarized and constructively discussed. For perspective, research on magnetic doping techniques for 2D TMDs materials should be directed toward more reliable and efficient directions, such as exploring advanced design strategies to combine dilute magnetic semiconductors, antiferromagnetic semiconductors, and superconductors to develop new types of heterojunctions; and advancing experimentation strategies to fabricate the designed materials and enable their functionalities with simultaneously pursuing the upscalable growth methods for high-quality monolayers to multilayers.

6.
Small ; 19(37): e2301468, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37140080

ABSTRACT

2D 2H-phase MoS2 is promising for electrocatalytic applications because of its stable phase, rich edge sites, and large surface area. However, the pristine low-conductive 2H-MoS2 suffers from limited electron transfer and surface activity, which become worse after their highly likely aggregation/stacking and self-curling during applications. In this work, these issues are overcome by conformally attaching the intercalation-detonation-exfoliated, surface S-vacancy-rich 2H-MoS2 onto robust conductive carbon nanotubes (CNTs), which electrically bridge bulk electrode and local MoS2 catalysts. The optimized MoS2 /CNTs nanojunctions exhibit outstanding stable electroactivity (close to commercial Pt/C): a polarization overpotential of 79 mV at the current density of 10 mA cm-2 and the Tafel slope of 33.5 mV dec-1 . Theoretical calculations unveil the metalized interfacial electronic structure of MoS2 /CNTs nanojunctions, enhancing defective-MoS2 surface activity and local conductivity. This work provides guidance on rational design for advanced multifaceted 2D catalysts combined with robust bridging conductors to accelerate energy technology development.

7.
Small ; 19(32): e2300756, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37078834

ABSTRACT

Designing sensing materials with integrating unique spatial structures, functional units, and surface activity is vital to achieve high-performance gas sensor toward triethylamine (TEA) detection. Herein, a simple spontaneous dissolution is used with subsequent thermal decomposition strategy to fabricate mesoporousized ZnO holey cubes. The squaric acid is crucial to coordinate Zn2+ to form a cubic shape (ZnO-0) and then tailor the inner part to open a holey cube with simultaneously mesoporousizing the left cubic body (ZnO-72). To enhance the sensing performance, the mesoporous ZnO holey cubes have been functionalized with catalytic Pt nanoparticles, which deliver superior performances including high response, low detection limit, and fast response and recovery time. Notably, the response of Pt/ZnO-72 towards 200 ppm TEA is up to 535, which is much higher than those of 43 and 224 for pristine ZnO-0 and ZnO-72. A synergistic mechanism combining the intrinsic merits of ZnO, its unique mesoporous holey cubic structure, the oxygen vacancies, and the catalytic sensitization effect of Pt has been proposed for the significant enhancement in TEA sensing. Our work provides an effective facile approach to fabricate an advanced micro-nano architecture with manipulating its spatial structure, functional units, and active mesoporous surface for promising TEA gas sensors.

8.
Nat Commun ; 14(1): 1050, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36828812

ABSTRACT

Since its fundamental inception from soap bubbles, Plateau's law has sparked extensive research in equilibrated states. However, most studies primarily relied on liquids, foams or cellular structures, whereas its applicability has yet to be explored in nano-scale solid films. Here, we observed a variant Plateau's law in networks of atomically thin domes made of solid two-dimensional (2D) transition metal dichalcogenides (TMDs). Discrete layer-dependent van der Waals (vdWs) interaction energies were experimentally and theoretically obtained for domes protruding in different TMD layers. Significant surface tension differences from layer-dependent vdWs interaction energies manifest in a variant of this fundamental law. The equivalent surface tension ranges from 2.4 to 3.6 N/m, around two orders of magnitude greater than conventional liquid films, enabling domes to sustain high gas pressure and exist in a fundamentally variant nature for several years. Our findings pave the way towards exploring variant discretised states with applications in opto-electro-mechanical devices.


Subject(s)
Motion Pictures , Transition Elements , Surface Tension , Transcription Factors
9.
Nanomicro Lett ; 15(1): 55, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36800133

ABSTRACT

To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device's software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human-machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.

10.
Chem Soc Rev ; 52(4): 1519, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36756836

ABSTRACT

Correction for 'Atomically flat semiconductor nanoplatelets for light-emitting applications' by Bing Bai et al., Chem. Soc. Rev., 2023, 52, 318-360, https://doi.org/10.1039/D2CS00130F.

11.
JACS Au ; 3(1): 216-226, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711089

ABSTRACT

Cesium lead halide (CsPbX3, X = Br, Cl, I) perovskite nanocrystals (NCs) possess tunable band gaps across the entire visible spectral range and are promising for various optoelectronic device applications. However, poor performance in adverse conditions limits their further development in practical optoelectronics. Herein, highly stable perovskite NCs are developed by doping europium(II) (Eu2+) into the B-site of CsPbBr3 with negligible lattice distortion/strain. Eu2+-doped CsPbBr3 NCs exhibit tunable green-to-cyan emissions, high photoluminescence quantum yield, and good resistance to harsh conditions, including ultraviolet irradiation, erosion of moisture, and corrosion of polar solvent molecules. In particular, the thermal stability of CsPbBr3 NCs after Eu2+ doping is greatly enhanced under continuous heating in air, while exhibiting the emissions of Eu2+. Furthermore, a Eu2+-doped CsPbBr3 NC-based cyan light-emitting diode is fabricated, which exhibits narrow exciton emission driven under different current densities. This work would open the avenue to develop the rational lanthanide ion doping strategy for further advancing perovskite nanomaterials toward practical applications.

12.
Proc Natl Acad Sci U S A ; 120(3): e2212075120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36634137

ABSTRACT

Liquid methanol has the potential to be the hydrogen energy carrier and storage medium for the future green economy. However, there are still many challenges before zero-emission, affordable molecular H2 can be extracted from methanol with high performance. Here, we present noble-metal-free Cu-WC/W plasmonic nanohybrids which exhibit unsurpassed solar H2 extraction efficiency from pure methanol of 2,176.7 µmol g-1 h-1 at room temperature and normal pressure. Macro-to-micro experiments and simulations unveil that local reaction microenvironments are generated by the coperturbation of WC/W's lattice strain and infrared-plasmonic electric field. It enables spontaneous but selective zero-emission reaction pathways. Such microenvironments are found to be highly cooperative with solar-broadband-plasmon-excited charge carriers flowing from Cu to WC surfaces for efficient stable CH3OH plasmonic reforming with C3-dominated liquid products and 100% selective gaseous H2. Such high efficiency, without any COx emission, can be sustained for over a thousand-hour operation without obvious degradation.

13.
Small ; 19(14): e2207177, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36703535

ABSTRACT

2D molybdenum disulfide (MoS2 ) is developed as a potential alternative non-precious metal electrocatalyst for energy conversion. It is well known that 2D MoS2 has three main phases 2H, 1T, and 1T'. However, the most stable 2H-phase shows poor electrocatalysis in its basal plane, compared with its edge sites. In this work, a facile one-step hydrothermal-driven in situ porousizing of MoS2 into self-supporting nano islands to maximally expose the edges of MoS2 grains for efficient utilization of the active stable sites at the edges of MoS2 is reported. The results show that such active, aggregation-free nano islands greatly enhance MoS2 's hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) bifunctional electrocatalytic activities. At a low overpotential of 248 and 300 mV, the porous MoS2 nano islands can generate a current density of 10 mA cm-2 in HER and OER, which is much better than typical nanosheet morphology. Surprisingly, the porous MoS2 nano islands even exhibit better performance than the current commercial RuO2 catalyst in OER. This discovery will be another effective strategy to promote robust 2H-phase, instead of 1T/1T'-phase, MoS2 to achieve efficient endurable bifunctional HER/OER, which is expected to further replace precious metal catalysts in industry.

14.
Chem Soc Rev ; 52(1): 318-360, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36533300

ABSTRACT

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.

15.
Chem Sci ; 13(42): 12367-12373, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36382279

ABSTRACT

CoF2, with a relatively high theoretical capacity (553 mA h g-1), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF2 and CoF2-based nano-heterostructures have been rarely reported. In this direction, an eco-friendly and precisely controlled colloidal synthesis strategy to grow uniformly sized CoF2 nanorods and LiF-tipped CoF2-nanorod heterostructures based on a seeded-growth method is established. The unveiled selective growth of LiF nanoparticles onto the two end tips of the CoF2 nanorods is associated with the higher energy of tips, which favors the nucleation of LiF nanocrystals. Notably, it was found that LiF could protect CoF2 from corrosion even after 9 months of aging. In addition, the as-obtained heterostructures were employed in supercapacitors and lithium sulfur batteries as cathode materials. The heterostructures consistently exhibited higher specific capacities than the corresponding two single components in both types of energy storage devices, making it a potential electrode material for energy storage applications.

16.
ACS Appl Mater Interfaces ; 14(40): 45716-45724, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36183271

ABSTRACT

Although substantial efforts have been made, controllable synthesis of p-type WS2 remains a challenge. In this work, we employ NaCl as a seeding promoter to realize vapor-liquid-solid (VLS) growth of p-type WS2. Morphological evolution, including a one-dimensional (1D) nanowire to two-dimensional (2D) planar domain and 2D shape transition of WS2 domains, can be well-controlled by the growth temperature and sulfur introduction time. A high growth temperature is required to enable planar growth of 2D WS2, and a sulfur-rich environment is found to facilitate the growth of high-quality WS2. Raman and photoluminescence (PL) mappings demonstrate uniform crystallinity and high quantum efficiency of VLS-grown WS2. Moreover, monolayer WS2-based field-effect transistors (FETs) are fabricated, showing p-type conducting behavior, which is different from previous reported n-type FETs from WS2 grown by other methods. First-principles calculations show that the p-type behavior originates from the substitution of Na at the W site, which will form an additional acceptor level above the valence band maximum (VBM). This facile VLS growth method opens the avenue to realize the p-n WS2 homojunctions and p/n-WS2-based heterojunctions for monolayer wearable electronic, photonic, optoelectronic, and biosensing devices and should also be a great benefit to the development of 2D complementary metal-oxide-semiconductor (CMOS) circuit applications.

17.
Small ; 18(33): e2201642, 2022 08.
Article in English | MEDLINE | ID: mdl-35843870

ABSTRACT

The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.


Subject(s)
Metal-Organic Frameworks , Electricity
18.
Adv Mater ; 34(36): e2104113, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35451528

ABSTRACT

Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. A critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials is presented. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential subdisciplines is presented, including: i) advanced data-intensive strategies and machine-learning algorithms; ii) material databases and related tools and platforms for data generation and management; iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these subdisciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted.

19.
J Am Chem Soc ; 144(11): 4863-4873, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35258958

ABSTRACT

Phase engineering of nanomaterials provides a promising way to explore the phase-dependent physicochemical properties and various applications of nanomaterials. A general bottom-up synthesis method under mild conditions has always been challenging globally for the preparation of the semimetallic phase-transition-metal dichalcogenide (1T'-TMD) monolayers, which are pursued owing to their unique electrochemical property, unavailable in their semiconducting 2H phases. Here, we report the general scalable colloidal synthesis of nanosized 1T'-TMD monolayers, including 1T'-MoS2, 1T'-MoSe2, 1T'-WS2, and 1T'-WSe2, which are revealed to be of high phase purity. Moreover, the surfactant-reliant stacking-hinderable growth mechanism of 1T'-TMD nano-monolayers was unveiled through systematic experiments and theoretical calculations. As a proof-of-concept application, the 1T'-TMD nano-monolayers are used for electrocatalytic hydrogen production in an acidic medium. The 1T'-MoS2 nano-monolayers possess abundant in-plane electrocatalytic active sites and high conductivity, coupled with the contribution of the lattice strain, thus exhibiting excellent performance. Importantly, the catalyst shows impressive endurability in electroactivity. Our developed general scalable strategy could pave the way to extend the synthesis of other broad metastable semimetallic-phase TMDs, which offer great potential to explore novel crystal phase-dependent properties with wide application development for catalysis and beyond.

20.
Small Methods ; 5(10): e2100887, 2021 10.
Article in English | MEDLINE | ID: mdl-34927932

ABSTRACT

As a fascinating visible-light-responsive photocatalyst, zinc indium sulfide (ZnIn2 S4 ) has attracted extensive interdisciplinary interest and is expected to become a new research hotspot in the near future, due to its nontoxicity, suitable band gap, high physicochemical stability and durability, ease of synthesis, and appealing catalytic activity. This review provides an overview on the recent advances in ZnIn2 S4 -based photocatalysts. First, the crystal structures and band structures of ZnIn2 S4 are briefly introduced. Then, various modulation strategies of ZnIn2 S4 are outlined for better photocatalytic performance, which includes morphology and structure engineering, vacancy engineering, doping engineering, hydrogenation engineering, and the construction of ZnIn2 S4 -based composites. Thereafter, the potential applications in the energy and environmental area of ZnIn2 S4 -based photocatalysts are summarized. Finally, some personal perspectives about the promises and prospects of this emerging material are provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...