Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 13(1): 2303195, 2024.
Article in English | MEDLINE | ID: mdl-38235318

ABSTRACT

Many biological processes related to cell function and fate begin with chromatin alterations, and many factors associated with the efficacy of immune checkpoint inhibitors (ICIs) are actually downstream events of chromatin alterations, such as genome changes, neoantigen production, and immune checkpoint expression. However, the influence of genes as chromatin regulators on the efficacy of ICIs remains elusive, especially in gastric cancer (GC). In this study, thirty out of 1593 genes regulating chromatin associated with a favorable prognosis were selected for GC. CHAF1A, a well-defined oncogene, was identified as the highest linkage hub gene. High CHAF1A expression were associated with microsatellite instability (MSI), high tumor mutation burden (TMB), high tumor neoantigen burden (TNB), high expressions of PD-L1 and immune effector genes, and live infiltration of immune cells. High CHAF1A expression indicated a favorable response and prognosis in immunotherapy of several cohorts, which was independent of MSI, TMB, TNB, PD-L1 expression, immune phenotype and transcriptome scoring, and improved patient selection based on these classic biomarkers. In vivo, CHAF1A knockdown alone inhibited tumor growth but it impaired the effect of an anti-PD-1 antibody by increasing the relative tumor proliferation rate and decreasing the survival benefit, potentially through the activation of TGF-ß signaling. In conclusion, CHAF1A may be a novel biomarker for improving patient selection in immunotherapy.


Subject(s)
B7-H1 Antigen , Stomach Neoplasms , Humans , B7-H1 Antigen/genetics , Chromatin , Immunotherapy , Stomach Neoplasms/pathology , Oncogenes/genetics
2.
World J Gastrointest Surg ; 15(11): 2627-2638, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38111767

ABSTRACT

BACKGROUND: The prevalence of multiple primary malignant neoplasms (MPMNs) is increasing in parallel with the incidence of malignancies, the continual improvement of diagnostic models, and the extended life of patients with tumors, especially those of the digestive system. However, the co-existence of MPMNs and duodenal adenocarcinoma (DA) is rarely reported. In addition, there is a lack of comprehensive analysis of MPMNs regarding multi-omics and the tumor microenvironment (TME). CASE SUMMARY: In this article, we report the case of a 56-year-old man who presented with a complaint of chest discomfort and abdominal distension. The patient was diagnosed with metachronous esophageal squamous cell carcinoma and DA in the Department of Oncology. He underwent radical resection and chemotherapy for the esophageal tumor, as well as chemotherapy combined with a programmed death-1 inhibitor for the duodenal tumor. The overall survival was 16.6 mo. Extensive evaluation of the multi-omics and microenvironment features of primary and metastatic tumors was conducted to: (1) Identify the reasons responsible for the poor prognosis and treatment resistance in this case; and (2) Offer novel diagnostic and therapeutic approaches for MPMNs. This case demonstrated that the development of a second malignancy may be independent of the location of the first tumor. Thus, tumor recurrence (including metastases) should be distinguished from the second primary for an accurate diagnosis of MPMNs. CONCLUSION: Multi-omics characteristics and the TME may facilitate treatment selection, improve efficacy, and assist in the prediction of prognosis.

3.
Article in English | MEDLINE | ID: mdl-37987949

ABSTRACT

Colon cancer (CC) is a primary human malignancy. Recently, the mechanism of the tumor microenvironment (TME) in CC has been a hot topic of research. However, there is uncertainty regarding the contribution of M2 macrophages and related genes to the prognosis for CC. M2 macrophage-related genes (M2RGs) were obtained from The Cancer Genome Atlas (TCGA) database. Immune cell infiltration in CC tissue was assessed by Cibersort. Based on the TCGA-COAD training set, a Least Absolute Shrinkage and Selection Operator (LASSO) Cox risk model was constructed and its efficiency was evaluated by analyzing risk profiles and survival profiles. Using gene set enrichment analysis (GSEA), the functional distinctions between high-risk and low-risk categories were further investigated. Finally, potential immune checkpoints, immunotherapy efficiency, and clinical treatment of high-risk patients were evaluated. A total of 1063 M2RGs were identified in TCGA-COAD, 32 of these were confirmed to be strongly related to overall survival (OS), and 14 of these were picked to construct an OS-oriented prognostic model in CC patients. The M2RG signature had a positive correlation with unfavorable prognosis according to the survival analysis. Correlation analysis revealed that the risk model was positively associated with clinicopathological characteristics, immune cell infiltration, immune checkpoint inhibitor targets, the risk of immune escape, and the efficiency of anti-cancer medications. The risk model created using M2RGs may be useful in predicting the prognosis of CC.

4.
Front Cell Dev Biol ; 10: 862294, 2022.
Article in English | MEDLINE | ID: mdl-35557959

ABSTRACT

Background: The immunotherapy efficacy in gastric cancer (GC) is limited. Cancer-associated fibroblasts (CAFs) induce primary resistance to immunotherapy. However, CAF infiltration in tumors is difficult to evaluate due to the lack of validated and standardized quantified methods. This study aimed to investigate the impact of infiltrating CAFs alternatively using fibroblast-associated mutation scoring (FAMscore). Methods: In a GC cohort from Affiliated Hospital of Jiangsu University (AHJU), whole exon sequencing of genomic mutations, whole transcriptome sequencing of mRNA expression profiles, and immunofluorescence staining of tumor-infiltrating immune cells were performed. GC data from The Cancer Genome Atlas were used to identify genetic mutations which were associated with overall survival (OS) and impacted infiltrating CAF abundance determined by transcriptome-based estimation. FAMscore was then constructed through a least absolute shrinkage and selection operator Cox regression model and further validated in AHJU. The predictive role of FAMscore for immunotherapy outcomes was tested in 1 GC, one melanoma, and two non-small-cell lung cancer (NSCLC-1 and -2) cohorts wherein participants were treated by immune checkpoint inhibitors. Results: FAMscore was calculated based on a mutation signature consisting of 16 genes. In both TCGA and AHJU, a high FAMscore was an independent predictor for poor OS of GC patients. FAMscore was associated with immune-associated genome biomarkers, immune cell infiltration, and signaling pathways of abnormal immunity. Importantly, patients with high FAMscore presented inferiority in the objective response rate of immunotherapy compared to those with low FAMscore, with 14.6% vs. 66.7% (p<0.001) in GC, 19.6% vs. 68.2% (p<0.001) in NSCLC-1, 23.1% vs 75% (p = 0.007) in NSCLC-2, and 40.9% vs 75% (p = 0.037) in melanoma. For available survival data, a high FAMscore was also an independent predictor of poor progression-free survival in NSCLC-1 (HR = 2.55, 95% CI: 1.16-5.62, p = 0.02) and NSCLC-2 (HR = 5.0, 95% CI: 1.13-22.19, p = 0.034) and poor OS in melanoma (HR = 3.48, 95% CI: 1.27-9.55, p = 0.015). Conclusions: Alternative evaluation of CAF infiltration in GC by determining the FAMscore could independently predict prognosis and immunotherapy outcomes. The FAMscore may be used to optimize patient selection for immunotherapy.

5.
Front Immunol ; 13: 799988, 2022.
Article in English | MEDLINE | ID: mdl-35281032

ABSTRACT

Background: HER2 is one of the most extensively studied oncogenes in solid tumors. However, the association between tumor microenvironment (TME) and HER2 mutation remains elusive, and there are no specific therapies for HER2-mutated tumors. Immune checkpoint inhibitors (ICIs) have been approved for some tumor subgroups that lack targeted therapies, while their effects are still unclear in HER2-mutated tumors. We examined whether HER2 mutation impacts treatment outcomes of ICIs in solid tumors via its association with anticancer immunity. Methods: Multi-omics data of solid tumors from The Cancer Genome Atlas (TCGA), the Asian Cancer Research Group and the Affiliated Hospital of Jiangsu University were used to analyze the association between HER2 mutations and tumor features. Data of patients with multiple microsatellite-stable solid tumors, who were treated by ICIs including antibodies against programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) in eight studies, were collected to investigate the effects of HER2 mutations on immunotherapy outcomes. Results: The mutation rate of HER2 varied in solid tumors of TCGA, with an overall incidence of 3.13%, ranged from 0.39% to 12.2%. Concurrent HER2 mutations and amplifications were rare (0.26%). HER2 mutation was not associated with HER2 protein expression but was positively associated with microsatellite instability, tumor mutation and neoantigen burdens, infiltrating antitumor immune cells, and signal activities of antitumor immunity. Of 321 ICI-treated patients, 18 carried HER2 mutations (5.6%) and showed improved objective response rates compared with those with HER2 wild-type (44.4% vs. 25.7%, p=0.081), especially in the anti-PD-1/anti-PD-L1 subgroup (62.5% vs. 28.4%, p=0.04). Heterogeneity was observed among tumor types. Patients with HER2 mutations also had superior overall survival than those with HER2 wild-type (HR=0.47, 95%CI: 0.23-0.97, p=0.04), especially in the presence of co-mutations in ABCA1 (HR = 0.23, 95% CI: 0.07-0.73, p=0.013), CELSR1 (HR = 0.24, 95% CI: 0.08-0.77, p=0.016), LRP2 (HR = 0.24, 95% CI: 0.07-0.74, p=0.014), or PKHD1L1 (HR = 0.2, 95% CI: 0.05-0.8, p=0.023). Conclusions: HER2 mutations may improve the TME to favor immunotherapy. A prospective basket trial is needed to further investigate the impacts of HER2 mutations on immunotherapy outcomes in solid tumors.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Mutation , Neoplasms/drug therapy , Neoplasms/therapy , Prospective Studies , Receptor, ErbB-2 , Tumor Microenvironment/genetics
6.
Pathol Oncol Res ; 27: 1610075, 2021.
Article in English | MEDLINE | ID: mdl-34992505

ABSTRACT

Glutamine metabolism (GM) plays a critical role in hepatocellular carcinoma (HCC); however, a comprehensive methodology to quantify GM activity is still lacking. We developed a transcriptome-based GMScore to evaluate GM activity and investigated the association of GMScore with prognosis and therapeutic resistance. Two independent HCC cohorts with transcriptome data were selected from The Cancer Genome Atlas (TCGA, n = 365) and the International Cancer Genome Consortium (ICGC, n = 231). The expression of 41 GM-associated genes were used to construct and validate GMScore. Several genomic or transcriptomic biomarkers were also estimated. Tumor response to immune checkpoint inhibitors (ICIs) was predicted using the tumor immune dysfunction and exclusion algorithm. GMScore was closely correlated with patient characteristics, including stage, histology grade, alpha-fetoprotein level, and vascular invasion. High GMScore was an independent risk factor for overall survival (OS) in both cohorts (HR = 4.2 and 3.91, both p < 0.001), superior to clinical indices and other biomarkers. High GMScore presented transcriptome features to indicate cell growth advantages and genetic stability, which was associated with poor OS of patients who received transcatheter arterial chemoembolization (TACE). High GMScore was also related to high expression of immune checkpoint genes, increased infiltration of regulatory T cells, and decreased infiltration of M1 macrophages. More importantly, high GMScore indicated poor predicted responses to ICIs, which could be verified in an ICI-treated melanoma cohort. In conclusion, GMScore is a strong prognostic index that may be integrated into existing clinical algorithms. A high GMScore may indicate resistance to TACE and ICIs based on its transcriptome and immune features. Validations using other HCC cohorts, especially ICI-treated HCC cohorts, are necessary.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Drug Resistance, Neoplasm/physiology , Glutamine/metabolism , Liver Neoplasms/pathology , Adult , Aged , Carcinoma, Hepatocellular/metabolism , Cohort Studies , Female , Humans , Liver Neoplasms/metabolism , Male , Middle Aged , Prognosis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...