Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(16): e2303775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327094

ABSTRACT

The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brain,and for AD and related Tauopathies, a therapeutic target.


Subject(s)
Lymphocyte Activation Gene 3 Protein , Neurons , Tauopathies , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Antigens, CD/metabolism , Antigens, CD/genetics , Disease Models, Animal , Neurons/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Tauopathies/metabolism , Tauopathies/genetics , Tauopathies/pathology
2.
Pharmaceutics ; 15(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38139997

ABSTRACT

Parkinson's Disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta with a reduction in dopamine concentration in the striatum. It is a substantial loss of dopaminergic neurons that is responsible for the classic triad of PD symptoms, i.e., resting tremor, muscular rigidity, and bradykinesia. Several current therapies for PD may only offer symptomatic relief and do not address the underlying neurodegeneration of PD. The recent developments in cellular reprogramming have enabled the development of previously unachievable cell therapies and patient-specific modeling of PD through Induced Pluripotent Stem Cells (iPSCs). iPSCs possess the inherent capacity for pluripotency, allowing for their directed differentiation into diverse cell lineages, such as dopaminergic neurons, thus offering a promising avenue for addressing the issue of neurodegeneration within the context of PD. This narrative review provides a comprehensive overview of the effects of dopamine on PD patients, illustrates the versatility of iPSCs and their regenerative abilities, and examines the benefits of using iPSC treatment for PD as opposed to current therapeutic measures. In means of providing a treatment approach that reinforces the long-term survival of the transplanted neurons, the review covers three supplementary avenues to reinforce the potential of iPSCs.

3.
J Transl Med ; 21(1): 682, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37779207

ABSTRACT

BACKGROUND: Recent progress in cancer immunotherapy encourages the expansion of chimeric antigen receptor (CAR) T cell therapy in solid tumors including hepatocellular carcinoma (HCC). Overexpression of MET receptor tyrosine kinase is common in HCC; however, MET inhibitors are effective only when MET is in an active form, making patient stratification difficult. Specific MET-targeting CAR-T cells hold the promise of targeting HCC with MET overexpression regardless of signaling pathway activity. METHODS: MET-specific CARs with CD28ζ or 4-1BBζ as co-stimulation domains were constructed. MET-CAR-T cells derived from healthy subjects (HS) and HCC patients were evaluated for their killing activity and cytokine release against HCC cells with various MET activations in vitro, and for their tumor growth inhibition in orthotopic xenograft models in vivo. RESULTS: MET-CAR.CD28ζ and MET-CAR.4-1BBζ T cells derived from both HS and HCC patients specifically killed MET-positive HCC cells. When stimulated with MET-positive HCC cells in vitro, MET-CAR.CD28ζ T cells demonstrated a higher level of cytokine release and expression of programmed cell death protein 1 (PD-1) than MET-CAR.4-1BBζ T cells. When analyzed in vivo, MET-CAR.CD28ζ T cells more effectively inhibited HCC orthotopic tumor growth in mice when compared to MET-CAR.4-1BBζ T cells. CONCLUSION: We generated and characterized MET-specific CAR-T cells for targeting HCC with MET overexpression regardless of MET activation. Compared with MET-CAR.4-1BBζ, MET-CAR.CD28ζ T cells showed a higher anti-HCC potency but also a higher level of T cell exhaustion. While MET-CAR.CD28ζ is preferred for further development, overcoming the exhaustion of MET-CAR-T cells is necessary to improve their therapeutic efficacy in vivo.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , T-Lymphocytes , Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Immunotherapy, Adoptive , Cytokines/metabolism , Signal Transduction
4.
Mov Disord ; 38(12): 2230-2240, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735923

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE: In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Repetitive Sequences, Amino Acid , Spinocerebellar Ataxias , Transcription, Genetic , Induced Pluripotent Stem Cells , Neurons/pathology , Apoptosis/genetics , Cell Line , Repetitive Sequences, Amino Acid/genetics , RNA-Binding Proteins/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Gene Knock-In Techniques , Humans , Animals , Mice , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , RNA, Antisense/genetics
5.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-37293032

ABSTRACT

The spread of prion-like protein aggregates is believed to be a common driver of pathogenesis in many neurodegenerative diseases. Accumulated tangles of filamentous Tau protein are considered pathogenic lesions of Alzheimer's disease (AD) and related Tauopathies, including progressive supranuclear palsy, and corticobasal degeneration. Tau pathologies in these illnesses exhibits a clear progressive and hierarchical spreading pattern that correlates with disease severity1,2. Clinical observation combined with complementary experimental studies3,4 have shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remains poorly understood. Here, we show that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF, but not monomer, of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. Our results identify neuronal Lag3 as a receptor of pathologic Tau in the brain, and for AD and related Tauopathies a therapeutic target.

6.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066173

ABSTRACT

OBJECTIVE: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.

7.
Res Sq ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909591

ABSTRACT

Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a rare neurological disorder caused by the mutations in the DARS2 gene, which encodes the mitochondrial aspartyl-tRNA synthetase. The objective of this study was to understand the impact of DARS2 mutations on cell processes through evaluation of LBSL patient stem cell derived cerebral organoids and neurons. We generated human cerebral organoids (hCOs) from induced pluripotent stem cells (iPSCs) of seven LBSL patients and three healthy controls using an unguided protocol. Single cells from 70-day-old hCOs underwent SMART-seq2 sequencing and multiple bioinformatic analysis tools were applied to high-resolution gene and transcript expression analyses. To confirm hCO findings, iPSC-derived neurons (iNs) were generated by overexpressing Neurogenin 2 using lentiviral vector to study neuronal growth, splicing of DARS2 exon 3 and DARS2 protein expression. Global gene expression analysis demonstrated dysregulation of a number of genes involved in mRNA metabolism and splicing processes within LBSL hCOs. Importantly, there were distinct and divergent gene expression profiles based on the nature of the DARS2 mutation. At the transcript level, pervasive differential transcript usage and differential spliced exon events that are involved in protein translation and metabolism were identified in LBSL hCOs. Single-cell analysis of DARS2 (exon 3) showed that some LBSL cells exclusively express transcripts lacking exon 3, indicating that not all LBSL cells can benefit from the "leaky" nature common to splice site mutations. Live cell imaging revealed neuronal growth defects of LBSL iNs, which was consistent with the finding of downregulated expression of genes related to neuronal differentiation in LBSL hCOs. DARS2 protein was downregulated in iNs compared to iPSCs, caused by increased exclusion of exon 3. At the gene- and transcript-level, we uncovered that dysregulated RNA splicing, protein translation and metabolism may underlie at least some of the pathophysiological mechanisms in LBSL. The scope and complexity of our data imply that DARS2 is potentially involved in transcription regulation beyond its canonical role of aminoacylation. Nevertheless, our work highlights transcript-level dysregulation as a critical, and relatively unexplored, mechanism linking genetic data with neurodegenerative disorders.

8.
Int J Mol Sci ; 24(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36768798

ABSTRACT

Synucleinopathies are a set of devastating neurodegenerative diseases that share a pathologic accumulation of the protein α-synuclein (α-syn). This accumulation causes neuronal death resulting in irreversible dementia, deteriorating motor symptoms, and devastating cognitive decline. While the etiology of these conditions remains largely unknown, microglia, the resident immune cells of the central nervous system (CNS), have been consistently implicated in the pathogenesis of synucleinopathies. Microglia are generally believed to be neuroprotective in the early stages of α-syn accumulation and contribute to further neurodegeneration in chronic disease states. While the molecular mechanisms by which microglia achieve this role are still being investigated, here we highlight the major findings to date. In this review, we describe how structural varieties of inherently disordered α-syn result in varied microglial receptor-mediated interactions. We also summarize which microglial receptors enable cellular recognition and uptake of α-syn. Lastly, we review the downstream effects of α-syn processing within microglia, including spread to other brain regions resulting in neuroinflammation and neurodegeneration in chronic disease states. Understanding the mechanism of microglial interactions with α-syn is vital to conceptualizing molecular targets for novel therapeutic interventions. In addition, given the significant diversity in the pathophysiology of synucleinopathies, such molecular interactions are vital in gauging all potential pathways of neurodegeneration in the disease state.


Subject(s)
Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Synucleinopathies/metabolism , Microglia/metabolism , Brain/metabolism , Central Nervous System/metabolism
9.
Genes Dis ; 9(3): 717-730, 2022 May.
Article in English | MEDLINE | ID: mdl-35782977

ABSTRACT

Glioblastoma (GBM, WHO grade IV glioma) is the most common and lethal malignant brain tumor in adults with a dismal prognosis. The extracellular matrix (ECM) supports GBM progression by promoting tumor cell proliferation, migration, and immune escape. Uridine diphosphate (UDP)-glucose 6-dehydrogenase (UGDH) is the rate-limiting enzyme that catalyzes the biosynthesis of glycosaminoglycans that are the principal component of the CNS ECM. We investigated how targeting UGDH in GBM influences the GBM immune microenvironment, including tumor-associated microglia/macrophages (TAMs) and T cells. TAMs are the main immune effector cells in GBM and can directly target tumor cells if properly activated. In co-cultures of GBM cells and human primary macrophages, UGDH knockdown in GBM cells promoted macrophage phagocytosis and M1-like polarization. In orthotropic human GBM xenografts and syngeneic mouse glioma models, targeting UGDH decreased ECM deposition, increased TAM phagocytosis marker expression, reduced M2-like TAMs and inhibited tumor growth. UGDH knockdown in GBM cells also promoted cytotoxic T cell infiltration and activation in orthotopic syngeneic mouse glioma models. The potent and in-human-use small molecule GAG synthesis inhibitor 4-methylumbelliferone (4-MU) was found to inhibit GBM cell proliferation and migration in vitro, mimic the macrophage and T-cell responses to UGDH knockdown in vitro and in vivo and inhibit growth of orthotopic murine GBM. Our study shows that UGDH supports GBM growth through multiple mechanisms and supports the development of ECM-based therapeutic strategies to simultaneously target tumor cells and their microenvironment.

10.
Mol Neurodegener ; 17(1): 8, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012575

ABSTRACT

BACKGROUND: Spinal cord motor neurons (MNs) from human iPS cells (iPSCs) have wide applications in disease modeling and therapeutic development for amyotrophic lateral sclerosis (ALS) and other MN-associated neurodegenerative diseases. We need highly efficient MN differentiation strategies for generating iPSC-derived disease models that closely recapitulate the genetic and phenotypic complexity of ALS. An important application of these models is to understand molecular mechanisms of action of FDA-approved ALS drugs that only show modest clinical efficacy. Novel mechanistic insights will help us design optimal therapeutic strategies together with predictive biomarkers to achieve better efficacy. METHODS: We induce efficient MN differentiation from iPSCs in 4 days using synthetic mRNAs coding two transcription factors (Ngn2 and Olig2) with phosphosite modification. These MNs after extensive characterization were applied in electrophysiological and neurotoxicity assays as well as transcriptomic analysis, to study the neuroprotective effect and molecular mechanisms of edaravone, an FDA-approved drug for ALS, for improving its clinical efficacy. RESULTS: We generate highly pure and functional mRNA-induced MNs (miMNs) from control and ALS iPSCs, as well as embryonic stem cells. Edaravone alleviates H2O2-induced neurotoxicity and electrophysiological dysfunction in miMNs, demonstrating its neuroprotective effect that was also found in the glutamate-induced miMN neurotoxicity model. Guided by the transcriptomic analysis, we show a previously unrecognized effect of edaravone to induce the GDNF receptor RET and the GDNF/RET neurotrophic signaling in vitro and in vivo, suggesting a clinically translatable strategy to activate this key neuroprotective signaling. Notably, edaravone can replace required neurotrophic factors (BDNF and GDNF) to support long-term miMN survival and maturation, further supporting the neurotrophic function of edaravone-activated signaling. Furthermore, we show that edaravone and GDNF combined treatment more effectively protects miMNs from H2O2-induced neurotoxicity than single treatment, suggesting a potential combination strategy for ALS treatment. CONCLUSIONS: This study provides methodology to facilitate iPSC differentiation and disease modeling. Our discoveries will facilitate the development of optimal edaravone-based therapies for ALS and potentially other neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Edaravone/metabolism , Edaravone/pharmacology , Edaravone/therapeutic use , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/therapeutic use , Motor Neurons/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Proto-Oncogene Proteins c-ret/therapeutic use , RNA, Messenger/metabolism , Signal Transduction
11.
Neuro Oncol ; 24(6): 888-900, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34951647

ABSTRACT

BACKGROUND: ATRX inactivation occurs with IDH1R132H and p53 mutations in over 80% of Grades II/III astrocytomas. It is believed that ATRX loss contributes to oncogenesis by dysregulating epigenetic and telomere mechanisms but effects on anti-glioma immunity have not been explored. This paper examines how ATRX loss contributes to the malignant and immunosuppressive phenotypes of IDH1R132H/p53mut glioma cells and xenografts. METHODS: Isogenic astrocytoma cells (+/-IDH1R132H/+/-ATRXloss) were established in p53mut astrocytoma cell lines using lentivirus encoding doxycycline-inducible IDH1R132H, ATRX shRNA, or Lenti-CRISPR/Cas9 ATRX. Effects of IDH1R132H+/-ATRXloss on cell migration, growth, DNA repair, and tumorigenicity were evaluated by clonal growth, transwell and scratch assays, MTT, immunofluorence and immunoblotting assays, and xenograft growth. Effects on the expression and function of modulators of the immune microenvironment were quantified by qRT-PCR, immunoblot, T-cell function, macrophage polarization, and flow cytometry assays. Pharmacologic inhibitors were used to examine epigenetic drivers of the immunosuppressive transcriptome of IDH1R132H/p53mut/ATRXloss cells. RESULTS: Adding ATRX loss to the IDH1R132H/p53mut background promoted astrocytoma cell aggressiveness, induced expression of BET proteins BRD3/4 and an immune-suppressive transcriptome consisting of up-regulated immune checkpoints (e.g., PD-L1, PD-L2) and altered cytokine/chemokine profiles (e.g., IL33, CXCL8, CSF2, IL6, CXCL9). ATRX loss enhanced the capacity of IDH1R132H/p53mut cells to induce T-cell apoptosis, tumorigenic/anti-inflammatory macrophage polarization and Treg infiltration. The transcriptional and biological immune-suppressive responses to ATRX loss were enhanced by temozolomide and radiation and abrogated by pharmacologic BET inhibition. CONCLUSIONS: ATRX loss activates a BRD-dependent immune-suppressive transcriptome and immune escape mechanism in IDH1R132H/p53mut astrocytoma cells.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Astrocytoma/genetics , Brain Neoplasms/pathology , Carcinogenesis , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Tumor Microenvironment , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
12.
Mol Cancer Res ; 19(11): 1878-1888, 2021 11.
Article in English | MEDLINE | ID: mdl-34348994

ABSTRACT

Heterozygous isocitrate dehydrogenase (IDH) R132H mutation (IDH1R132H/WT) is an early event during gliomagenesis. Clinically, patients with glioma carrying mutant IDH1 respond better to antitumor therapies. However, the mechanism by which IDH1 mutations contribute to gliomagenesis and therapeutic response remains elusive. Here we report that senescence is involved in the improved therapeutic responses of mutant IDH1 glioma cells. Knocking-in IDH1R132H/WT in glioma cells significantly enhanced gliomas cell senescence in response to temozolomide and radiation via a DNA-damage mediated mechanism. We further asked if senescence plays a role in IDH1R132H/WT-induced gliomagenesis. Together with ATRX knockout and p53/RB loss, IDH1R132H/WT transformed nonneoplastic human astroglial cells to form tumors in mouse brains. In-depth characterization revealed that a subset of these precancerous cells underwent senescence-like phenotypic changes, including flat and enlarged-cell morphology, increased senescence marker expression, decreased cell proliferation, and cell-cycle arrest at the G2-M phase. Mechanistic studies indicated that the combination of glioma driver genes (p53/RB/IDH1/ATRX) dramatically increased DNA damage and activated DNAdamage response (DDR) pathways ATR/ATR and Chk1/Chk2 in senescent cells. To determine how senescent cells drive tumor formation, we investigated non-cell-autonomous mechanisms such as senescence-associated secretory phenotype (SASP), a panel of proinflammatory and tissue-remodeling factors implicated in a tumor-permissive microenvironment. We found that astroglial cells carrying p53/RB/ATRX loss and IDH1R132H/WT upregulated key factors in SASP via an epigenetic-mediated mechanism. Our work suggests that drugs that specifically eliminate senescent cells could help kill precancerous cells and senescent tumor cells following antitumor therapies. IMPLICATIONS: The mechanisms by which IDH1 mutations contribute to gliomagenesis and therapeutic responses remain incompletely characterized; this work reveals senescence as a novel mechanism of IDH-mutant-mediated biological impact and describes new therapeutic opportunities concerning IDH1-mutant gliomas.


Subject(s)
Cellular Senescence/genetics , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Neoplasms/therapy , Animals , Cell Line, Tumor , Cell Proliferation , Female , Glioma/pathology , Humans , Mice , Mice, SCID , Mutation , Tumor Microenvironment
13.
Cancer Lett ; 517: 35-45, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34098063

ABSTRACT

Tumor-associated microglia/macrophages (TAMs) are the main innate immune effector cells in malignant gliomas and have both pro- and anti-tumor functions. The plasticity of TAMs is partially dictated by oncogenic mutations in tumor cells. Heterozygous IDH1 mutation is a cancer driver gene prevalent in grade II/III gliomas, and IDH1 mutant gliomas have relatively favorable clinical outcomes. It is largely unknown how IDH mutation alters TAM phenotypes to influence glioma growth. Here we established clinically relevant isogenic glioma models carrying monoallelic IDH1 R132H mutation (IDH1R132H/WT) and found that IDH1R132H/WT significantly downregulated immune response-related pathways in glioma cells, indicating an immunomodulation role of mutant IDH1. Co-culturing IDH1R132H/WT glioma cells with human macrophages promoted anti-tumor phenotypes of macrophages and increased macrophage migration and phagocytic capacity. In orthotopic xenografts, IDH1R132H/WT decreased tumor growth and prolonged animal survival, accompanied by increased TAM recruitment and upregulated phagocytosis markers, suggesting the induction of anti-tumor TAM functions. Using human cytokine arrays that query 36 proteins, we identified significant downregulation of ICAM-1/CD54 in IDH1R132H/WT gliomas, which was further confirmed by ELISA and immunoblotting analyses. ICAM1 gain-of-function studies revealed that ICAM1 downregulation in IDH1R132H/WT cells played a mechanistic role to mediate the immunomodulation function of IDH1R132H/WT. ICAM-1 silencing in IDH1 wild-type glioma cells decreased tumor growth and increased the anti-tumor function of TAMs. Together, our studies support a new TAM-mediated phagocytic function within IDH1 mutant gliomas, and improved understanding of this process may uncover novel approaches to targeting IDH1 wild type gliomas.


Subject(s)
Down-Regulation/genetics , Glioma/genetics , Intercellular Adhesion Molecule-1/genetics , Isocitrate Dehydrogenase/genetics , Macrophages/metabolism , Microglia/metabolism , Mutation/genetics , Animals , Cell Line , Cell Line, Tumor , Female , Humans , Intercellular Adhesion Molecule-1/metabolism , Leukocytes, Mononuclear , Mice , Mice, SCID , THP-1 Cells
14.
Cancer Res ; 81(13): 3580-3592, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33910930

ABSTRACT

Hyperactivated EGFR signaling is a driver of various human cancers, including glioblastoma (GBM). Effective EGFR-targeted therapies rely on knowledge of key signaling hubs that transfer and amplify EGFR signaling. Here we focus on the transcription factor TAZ, a potential signaling hub in the EGFR signaling network. TAZ expression was positively associated with EGFR expression in clinical GBM specimens. In patient-derived GBM neurospheres, EGF induced TAZ through EGFR-ERK and EGFR-STAT3 signaling, and the constitutively active EGFRvIII mutation caused EGF-independent hyperactivation of TAZ. Genome-wide analysis showed that the EGFR-TAZ axis activates multiple oncogenic signaling mechanisms, including an EGFR-TAZ-RTK positive feedback loop, as well as upregulating HIF1α and other oncogenic genes. TAZ hyperactivation in GBM stem-like cells induced exogenous mitogen-independent growth and promoted GBM invasion, radioresistance, and tumorigenicity. Screening a panel of brain-penetrating EGFR inhibitors identified osimertinib as the most potent inhibitor of the EGFR-TAZ signaling axis. Systemic osimertinib treatment inhibited the EGFR-TAZ axis and in vivo growth of GBM stem-like cell xenografts. Overall these results show that the therapeutic efficacy of osimertinib relies on effective TAZ inhibition, thus identifying TAZ as a potential biomarker of osimertinib sensitivity. SIGNIFICANCE: This study establishes a genome-wide map of EGFR-TAZ signaling in glioblastoma and finds osimertinib effectively inhibits this signaling, justifying its future clinical evaluation to treat glioblastoma and other cancers with EGFR/TAZ hyperactivation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3580/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , STAT3 Transcription Factor/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , STAT3 Transcription Factor/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Mol Cancer Ther ; 20(6): 1199-1209, 2021 06.
Article in English | MEDLINE | ID: mdl-33722850

ABSTRACT

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. MYC-driven MBs, commonly found in the group 3 MB, are aggressive and metastatic with the worst prognosis. Modeling MYC-driven MB is the foundation of therapeutic development. Here, we applied a synthetic mRNA-driven strategy to generate neuronal precursors from human-induced pluripotent stem cells (iPSCs). These neuronal precursors were transformed by the MYC oncogene combined with p53 loss of function to establish an MYC-driven MB model recapitulating the histologic and transcriptomic hallmarks of group 3 MB. We further show that the marine compound Frondoside A (FA) effectively inhibits this MYC-driven MB model without affecting isogenic neuronal precursors with undetectable MYC expression. Consistent results from a panel of MB models support that MYC levels are positively correlated with FA's antitumor potency. Next, we show that FA suppresses MYC expression and its downstream gene targets in MB cells, suggesting a potential mechanism underlying FA's inhibitory effects on MYC-driven cancers. In orthotopic xenografts of MYC-driven MB, intratumoral FA administration potently induces cytotoxicity in tumor xenografts, significantly extends the survival of tumor-bearing animals, and enhances the recruitment of microglia/macrophages and cytotoxic T lymphocytes to tumors. Moreover, we show that MYC levels also predict FA potency in glioblastoma and non-small cell lung cancer cells. Taken together, this study provides an efficient human iPSC-based strategy for personalizable cancer modeling, widely applicable to mechanistic studies (e.g., genetic predisposition to cancer) and drug discovery. Our preclinical results justify the clinical translation of FA in treating MYC-driven MB and other human cancers.


Subject(s)
Glycosides/pharmacology , Induced Pluripotent Stem Cells/drug effects , Medulloblastoma/drug therapy , Proto-Oncogene Proteins c-myc/genetics , Triterpenes/pharmacology , Animals , Disease Models, Animal , Female , Humans , Medulloblastoma/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Xenograft Model Antitumor Assays
16.
Cancer Res ; 81(9): 2457-2469, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33574085

ABSTRACT

A subset of stem-like cells in glioblastoma (GBM; GSC) underlies tumor propagation, therapeutic resistance, and tumor recurrence. Immune evasion is critical for GSCs to carry out these functions. However, the molecular mechanisms employed by GSCs to escape antitumor immunity remain largely unknown. The reprogramming transcription factors Oct4 and Sox2 function as core multipotency factors and play an essential role in the formation and maintenance of GSCs, but the roles of these transcription factors in GSC immune escape have not been well explored. Here we examine how Oct4/Sox2 coexpression contributes to the immunosuppressive phenotype of GSCs. Combined transcription profiling and functional studies of Oct4/Sox2 coexpressing GSCs and differentiated GBM cells demonstrated that Oct4 and Sox2 cooperatively induce an immunosuppressive transcriptome consisting of multiple immunosuppressive checkpoints (i.e., PD-L1, CD70, A2aR, TDO) and dysregulation of cytokines and chemokines that are associated with an immunosuppressive tumor microenvironment. Mechanistically, induction and function of BRD/H3k27Ac-dependent immunosuppressive genes played a role in the immunosuppressive phenotype of GSCs. Pan-BET bromodomain inhibitors (e.g., JQ1) and shBRD4 constructs significantly inhibited the immunosuppressive transcriptome and immunosuppressive biological responses induced by Oct4/Sox2. Our findings identify targetable mechanisms by which tumor-propagating GSCs contribute to the immunosuppressive microenvironment in GBM. SIGNIFICANCE: This report identifies mechanisms by which the reprogramming transcription factors Oct4 and Sox2 function to drive the immunomodulatory transcriptome of GSCs and contribute to the immunosuppressive microenvironment in GBM.


Subject(s)
Cell Cycle Proteins/metabolism , Immune Tolerance , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Transcription Factors/metabolism , Transcriptome/immunology , Animals , Apoptosis/genetics , Brain Neoplasms , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Female , Glioblastoma , Humans , Jurkat Cells , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , THP-1 Cells , Transcription Factors/genetics , Transfection , Transgenes , Tumor Burden/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
17.
Glia ; 68(10): 2148-2166, 2020 10.
Article in English | MEDLINE | ID: mdl-32639068

ABSTRACT

Glioblastoma (GBM) is the most aggressive primary brain tumor. In addition to being genetically heterogeneous, GBMs are also immunologically heterogeneous. However, whether the differences in immune microenvironment are driven by genetic driver mutation is unexplored. By leveraging the versatile RCAS/tv-a somatic gene transfer system, we establish a mouse model for Classical GBM by introducing EGFRvIII expression in Nestin-positive neural stem/progenitor cells in adult mice. Along with our previously published Nf1-silenced and PDGFB-overexpressing models, we investigate the immune microenvironments of the three models of human GBM subtypes by unbiased multiplex profiling. We demonstrate that both the quantity and composition of the microenvironmental myeloid cells are dictated by the genetic driver mutations, closely mimicking what was observed in human GBM subtypes. These myeloid cells express high levels of the immune checkpoint protein PD-L1; however, PD-L1 targeted therapies alone or in combination with irradiation are unable to increase the survival time of tumor-bearing mice regardless of the driver mutations, reflecting the outcomes of recent human trials. Together, these results highlight the critical utility of immunocompetent mouse models for preclinical studies of GBM, making these models indispensable tools for understanding the resistance mechanisms of immune checkpoint blockade in GBM and immune cell-targeting drug discovery.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/immunology , Glioblastoma/genetics , Glioblastoma/immunology , Immune Checkpoint Inhibitors/therapeutic use , Mutation/physiology , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Cells, Cultured
18.
Neuro Oncol ; 22(2): 240-252, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31563962

ABSTRACT

BACKGROUND: The ligands of mitochondrial translocator protein (TSPO) have been widely used as diagnostic biomarkers for glioma. However, the true biological actions of TSPO in vivo and its role in glioma tumorigenesis remain elusive. METHODS: TSPO knockout xenograft and spontaneous mouse glioma models were employed to assess the roles of TSPO in the pathogenesis of glioma. A Seahorse Extracellular Flux Analyzer was used to evaluate mitochondrial oxidative phosphorylation and glycolysis in TSPO knockout and wild-type glioma cells. RESULTS: TSPO deficiency promoted glioma cell proliferation in vitro in mouse GL261 cells and patient-derived stem cell-like GBM1B cells. TSPO knockout increased glioma growth and angiogenesis in intracranial xenografts and a mouse spontaneous glioma model. Loss of TSPO resulted in a greater number of fragmented mitochondria, increased glucose uptake and lactic acid conversion, decreased oxidative phosphorylation, and increased glycolysis. CONCLUSION: TSPO serves as a key regulator of glioma growth and malignancy by controlling the metabolic balance between mitochondrial oxidative phosphorylation and glycolysis.1. TSPO deficiency promotes glioma growth and angiogenesis.2. TSPO regulates the balance between mitochondrial oxidative phosphorylation and glycolysis.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Mitochondria/metabolism , Receptors, GABA/metabolism , Animals , Brain Neoplasms/metabolism , Cell Hypoxia/physiology , Glioblastoma/metabolism , Glycolysis/physiology , Heterografts , Humans , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Oxidative Phosphorylation , Receptors, GABA/genetics
19.
Angew Chem Int Ed Engl ; 58(29): 9871-9875, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31162873

ABSTRACT

While carbon dots (C-dots) have been extensively investigated pertaining to their fluorescent, phosphorescent, electrochemiluminescent, optoelectronic, and catalytic features, their inherent chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) properties are unknown. By virtue of their hydrophilicity and abundant exchangeable protons of hydroxyl, amine, and amide anchored on the surface, we report here that C-dots can be adapted as effective diamagnetic CEST (diaCEST) MRI contrast agents. As a proof-of-concept demonstration, human glioma cells were labeled with liposomes with or without encapsulated C-dots and implanted in mouse brain. In vivo CEST MRI was able to clearly differentiate labeled cells from non-labeled cells. The present findings may encourage new applications of C-dots for in vivo imaging in deep tissues, which is currently not possible using conventional fluorescent (near-infrared) C-dots.


Subject(s)
Carbon/therapeutic use , Contrast Media/therapeutic use , Magnetic Resonance Imaging/methods , Quantum Dots/chemistry , Carbon/pharmacology , Humans
20.
Cancer Res ; 79(10): 2697-2708, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30898840

ABSTRACT

Glioblastomas (GBM) are highly infiltrated by myeloid-derived innate immune cells that contribute to the immunosuppressive nature of the brain tumor microenvironment (TME). CD47 has been shown to mediate immune evasion, as the CD47-SIRPα axis prevents phagocytosis of tumor cells by macrophages and other myeloid cells. In this study, we established CD47 homozygous deletion (CD47-/-) in human and mouse GBM cells and investigated the impact of eliminating the "don't eat me" signal on tumor growth and tumor-TME interactions. CD47 knockout (KO) did not significantly alter tumor cell proliferation in vitro but significantly increased phagocytosis of tumor cells by macrophages in cocultures. Compared with CD47 wild-type xenografts, orthotopic xenografts derived from CD47-/- tumor cells grew significantly slower with enhanced tumor cell phagocytosis and increased recruitment of M2-like tumor-associated microglia/macrophages (TAM). CD47 KO increased tumor-associated extracellular matrix protein tenascin C (TNC) in xenografts, which was further examined in vitro. CD47 loss of function upregulated TNC expression in tumor cells via a Notch pathway-mediated mechanism. Depletion of TNC in tumor cells enhanced the growth of CD47-/- xenografts in vivo and decreased the number of TAM. TNC knockdown also inhibited phagocytosis of CD47-/- tumor cells in cocultures. Furthermore, TNC stimulated release of proinflammatory factors including TNFα via a Toll-like receptor 4 and STAT3-dependent mechanism in human macrophage cells. These results reveal a vital role for TNC in immunomodulation in brain tumor biology and demonstrate the prominence of the TME extracellular matrix in affecting the antitumor function of brain innate immune cells. SIGNIFICANCE: These findings link TNC to CD47-driven phagocytosis and demonstrate that TNC affects the antitumor function of brain TAM, facilitating the development of novel innate immune system-based therapies for brain tumors.


Subject(s)
Brain Neoplasms/immunology , CD47 Antigen/immunology , Glioblastoma/immunology , Loss of Function Mutation , Phagocytosis , Tenascin/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CD47 Antigen/genetics , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Heterografts , Humans , Immunity, Innate , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...