Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(33): 11601-11610, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37551436

ABSTRACT

Developing inexpensive electrocatalysts with high activity and stability is of great value for overall water splitting. In this work, we designed a series of 3d-4f (FeMnCe)-trimetallic MOF-74 with different ratios of 3d- and 4f-metal centers. Among them, FeMn6Ce0.5-MOF-74/NF exhibited the best electrocatalytic performance for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline solution. It only requires a low overpotential of 281 mV@100 mA cm-2 for OER and 186 mV@-10 mA cm-2 for HER in 1 M KOH. With FeMn6Ce0.5-MOF-74/NF as the anode and cathode in the overall water splitting system, only 1.65 V is needed to deliver a current density of 10 mA cm-2. In particular, for the as-fabricated FeMn6Ce0.5-MOF-74/NF||Pt/C cell unit, only 1.40 V is needed to achieve 10 mA cm-2. Therefore, the successful design of 3d-4f mixed-metallic MOF-74 provides a new viewpoint to develop highly efficient non-precious metal electrocatalysts.

2.
Dalton Trans ; 52(26): 9048-9057, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37337722

ABSTRACT

Prussian blue analogues (PBAs) are a family of classic coordination polymers. They have been widely applied in various fields including electrochemical sensors. Cubic nanoparticle structure is their common morphology. It is still a great challenge to design a hollow and two-dimensional (2D) PBA material. Of course, it will be a significant surprise if a hollow cube and 2D sheet can be integrated into one material. In this work, we designed a simple one-step synthetic strategy and resolved the above difficulty, wherein a hollow cubic PBA covered by 2D ultrathin nanosheets was successfully constructed, namely hollow tremella-like PBA (HTPBA). Furthermore, Ni foam (NF) as a substrate was introduced to obtain a self-supporting HTPBA/NF-12 electrode. HTPBA/NF-12, as a bifunctional electrochemical sensor electrode, exhibited distinguished catalytic performance towards glucose and nitrite, including remarkable selectivity, reproducibility, sensitivity for glucose (21 410 µA mM-1 cm-2) and nitrite (1248 µA mM-1 cm-2), wide linear range of 2-1250 µM and 5-3380 µM, along with low detection limit of 0.056 µM and 0.38 µM, respectively. More importantly, HTPBA/NF-12 electrodes possessed good reusability and practicability even in goat serum. In this study, we developed a simple and effective strategy to fabricate 2D@3D PBA material with excellent electrocatalytic activity and provide a totally new viewpoint in the PBA sensing field.

3.
Inorg Chem ; 62(18): 7014-7023, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37126666

ABSTRACT

In this work, a highly efficient multifunctional non-enzymatic electrochemical sensor is successfully fabricated based on a facile two-step synthetic strategy. It resolves two important challenges of poor stability and low reproducibility compared to conventional electrochemical enzyme-based sensors. Herein, a metal-organic framework (UiO-66) is selected as a sacrificial template to construct the corresponding Prussian blue analogue (PBA) target to improve its stability and conductivity, namely, PBA/UiO-66/NF. Target PBA/UiO-66/NF exhibits excellent electrochemical sensing performance as hydrogen peroxide (H2O2) and glucose sensors with ultrahigh sensitivity of up to 1903 µA mM-1 cm-2 for H2O2 and 22,800 µA mM-1 cm-2 for glucose, as well as a very low detection limit of 0.02 µM (S/N = 3) for H2O2 and 0.28 µM for glucose. Especially, extremely high stability can be observed, which will be beneficial for practical application.

4.
Chempluschem ; 88(2): e202200422, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36782384

ABSTRACT

Exploring non-precious metal-based electrocatalysts is still challenging in 21st century. In this work, a series of hexagonal bipyramidal Ce-based PBA materials as precursors with different Fe/Co metal ratios, namely as CeFex Co1-x -PBA, are successfully constructed via co-precipitation method and converted into corresponding metal oxides (denoted as Fex Co1-x CeOy ) via thermal treatment. Then, they as electrocatalysts realize highly efficient oxygen evolution reaction (OER). Especially, as-synthesized Fe0.7 Co0.3 CeOy electrocatalyst shows very low overpotentials of 320 mV at the current density of 10 mA cm-2 and the Tafel slop of 98.4 mV dec-1 in 1 M KOH with remarkable durability for 24 h, which was due to the synergistic effect of multi-metal FeCoCe centers. Furthermore, a two-electrode cell of Fe0.7 Co0.3 CeOy /NF||Pt/C/NF realizes outstanding overall water splitting with a voltage of only 1.71 V at 10 mA cm-2 and remarkable long-term durability, that is even superior to benchmark IrO2 /NF||Pt/C/NF counterpart.

5.
ACS Appl Mater Interfaces ; 14(33): 37804-37813, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35944544

ABSTRACT

This is the first time that the pore-space-partition (PSP) strategy is being successfully applied in the electrochemical field for water splitting, realizing the highly efficient construction of a series of ultrastable pristine MOF electrocatalysts. On integrating the vanadium-based trimetallic building cluster (M2V), the target M2V-MOFs exhibit excellent electrocatalytic activity for HER, OER, and water splitting. In particular, ultralow overpotentials of 314 and 198 mV for Fe2V-MOF as OER and HER electrocatalysts, respectively, can drive a current density of 10 mA cm-2. The fabricated Fe2V-MOF||Pt/C two-electrode configuration for the overall water splitting yields a current density of 10 mA cm-2 at only 1.6 V vs RHE, which is superior to that of the commercial IrO2||Pt/C couple. Notably, high structural and chemical stabilities still can be observed in alkaline condition. This work opens up an exciting pathway to design efficient and stable electrocatalysts based on pristine MOF by integrating the PSP strategy and multimetallic centers.

6.
Inorg Chem ; 61(28): 10934-10941, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35772081

ABSTRACT

Metal-organic frameworks (MOFs) as classic crystalline porous materials have attracted great interest in the catalytic field. However, how to realize molecular regulation of the MOF structure to achieve a remarkable oxygen evolution reaction (OER) electrocatalyst is still a challenge. Herein, we designed several series of special MOF materials to explore the relationship between the structure and properties as well as the related reactive mechanism. First, various metal centers, including Fe, Co, Ni, Zn, and Mg, were utilized to construct the first series of trimetallic MOF materials, namely, M3-MOF-BDC, where BDC = 1,4-benzenedicarboxylic acid, also known as terephthalic acid. Among of them, Fe3-MOF-BDC shows the best OER performance and only needs an overpotential of 312 mV at 10 mA cm-2. Then, functional BDC-X ligands (X = NH2, OH, NO2, DH) with various characteristic groups were selected to construct a new series, namely, Fe3-MOF-BDC-X, to further improve its OER electrocatalytic performance. As expected, Fe3-MOF-BDC-NH2 exhibited a greatly enhanced OER performance with ultralow Tafel slopes of 45 mV dec-1 and overpotentials of 280 mV at 10 mA cm-2 when the BDC-NH2 ligand was adopted, even superior to commercial IrO2 (323 mV) and most of the reported pristine MOFs as OER electrodes. Much higher structural stability was proven. The detailed structure-property relationship and mechanism are discussed. In a word, this work provides a very important theoretical basis for the design and exploration of new MOF electrocatalysts.

7.
Inorg Chem ; 61(5): 2587-2594, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35060719

ABSTRACT

In this work, an indium-based metal-organic framework was successfully constructed, namely, as In-MOF, by elaborately selecting an InIII center with unique properties and a functional tetracarboxylic acid with unsaturated and open-coordinated nodes. Interestingly, the InIII center was connected to a single-metal-node-based porous three-dimensional pts net. Its structure was dentified by single-crystal and powder X-ray diffraction, Fourier transform infrared, thermogravimetric analysis, etc. Considering the special luminescent characteristic of an indium-based framework, as-prepared In-MOF was explored as a photocatalyst for H2 production from water splitting. The testing results demonstrate that In-MOF as a promising photocatalyst with a suitable band gap realizes a H2 evolution efficiency of 777.65 µmol g-1 h-1.

8.
Chempluschem ; 86(12): 1608-1622, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34907675

ABSTRACT

Prussian blue (PB) and its analogue (PBA) are a kind of representative cyanide-based coordination polymer. They have received enormous research interest and have shown promising applications in the electrochemical sensing field due to their excellent electrochemical activity and unique structural characteristics including open framework structure, high specific surface area, and adjustable metal active sites. In this review, we summarize the latest research progress of PB/PBA as an electrochemical sensor in detail from three aspects: fabrication strategy, synthesis method and electrochemical sensor application. For the fabrication strategy, we discussed different fabrication methods containing the combination of PBA and carbon materials, metal nanoparticles, polymers, etc., respectively, as well as their corresponding sensing mechanism for improving performance. We also presented the synthesis methods of PB/PBA materials in detail, such as: coprecipitation, hydrothermal and electrodeposition. In addition, the effects of different methods on the morphology, particle size and productivity of PB/PBA materials are also concluded. For the application of electrochemical sensors, the latest progress of such materials as electrochemical sensors for glucose, H2 O2 , toxic compounds, and biomolecules have been summarized. Finally, we conclude remaining challenges of PB/PBA-based materials as electrochemical sensors, and provide personal perspectives for future research in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...