Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Complement Med Ther ; 23(1): 307, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667314

ABSTRACT

BACKGROUND: Allergy is an inflammatory disorder affecting around 20% of the global population. The adverse effects of current conventional treatments give rise to the increased popularity of using natural food products as complementary and alternative medicine against allergic diseases. Stingless bee honey, commonly known as Kelulut honey (KH) in Malaysia, has been used locally as a traditional remedy to relieve cough and asthma. This study evaluated the anti-allergic potential of KH collected from four different botanical sources on phorbol ester 12-myristate-3-acetate and calcium ionophore-activated human mast cells. METHODS: The present study examined the inhibitory effects of all collected honey on the release of selected inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, IL-8, histamine, and ß-hexosaminidase in an activated HMC. Besides that, all honey's total phenolic content (TPC) was also examined, followed by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the phytochemicals in the honey. Further examination of the identified phytochemicals on their potential interaction with selected signaling molecules in an activated mast cell was conducted using computational methods. RESULTS: The results indicated that there were significant inhibitory effects on all selected inflammatory mediators' release by KH sourced from bamboo (BH) and rubber tree (RH) at 0.5% and 1%, but not KH sourced from mango (AH) and noni (EH). BH and RH were found to have higher TPC values and were rich in their phytochemical profiles based on the LC-MS/MS results. Computational studies were employed to determine the possible molecular target of KH through molecular docking using HADDOCK and PRODIGY web servers. CONCLUSIONS: In short, the results indicated that KH possesses anti-allergic effects towards an activated HMC, possibly by targeting downstream MAPKs. However, their anti-allergic effects may vary according to their botanical sources. Nevertheless, the present study has provided insight into the potential application of stingless bee honey as a complementary and alternative medicine to treat various allergic diseases.


Subject(s)
Anti-Allergic Agents , Honey , Hypersensitivity , Humans , Bees , Animals , Anti-Allergic Agents/pharmacology , Mast Cells , Cell Degranulation , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry
2.
Curr Res Microb Sci ; 5: 100202, 2023.
Article in English | MEDLINE | ID: mdl-37700857

ABSTRACT

Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.

3.
Viruses ; 15(4)2023 04 10.
Article in English | MEDLINE | ID: mdl-37112923

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is associated with a lower fatality rate than its SARS and MERS counterparts. However, the rapid evolution of SARS-CoV-2 has given rise to multiple variants with varying pathogenicity and transmissibility, such as the Delta and Omicron variants. Individuals with advanced age or underlying comorbidities, including hypertension, diabetes and cardiovascular diseases, are at a higher risk of increased disease severity. Hence, this has resulted in an urgent need for the development of better therapeutic and preventive approaches. This review describes the origin and evolution of human coronaviruses, particularly SARS-CoV-2 and its variants as well as sub-variants. Risk factors that contribute to disease severity and the implications of co-infections are also considered. In addition, various antiviral strategies against COVID-19, including novel and repurposed antiviral drugs targeting viral and host proteins, as well as immunotherapeutic strategies, are discussed. We critically evaluate strategies of current and emerging vaccines against SARS-CoV-2 and their efficacy, including immune evasion by new variants and sub-variants. The impact of SARS-CoV-2 evolution on COVID-19 diagnostic testing is also examined. Collectively, global research and public health authorities, along with all sectors of society, need to better prepare against upcoming variants and future coronavirus outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Pandemics/prevention & control , Vaccination , Antiviral Agents/therapeutic use
4.
Viruses ; 14(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36146796

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immune Evasion , Immunity, Innate , Interferons , Pandemics
5.
Viruses ; 14(6)2022 06 20.
Article in English | MEDLINE | ID: mdl-35746815

ABSTRACT

Molnupiravir is a ß-d-N4-hydroxycytidine-5'-isopropyl ester (NHC) compound that exerts antiviral activity against various RNA viruses such as influenza, SARS, and Ebola viruses. Thus, the repurposing of Molnupiravir has gained significant attention for combatting infection with SARS-CoV-2, the etiological agent of COVID-19. Recently, Molnupiravir was granted authorization for the treatment of mild-to-moderate COVID-19 in adults. Findings from in vitro experiments, in vivo studies and clinical trials reveal that Molnupiravir is effective against SARS-CoV-2 by inducing viral RNA mutagenesis, thereby giving rise to mutated complementary RNA strands that generate non-functional viruses. To date, the data collectively suggest that Molnupiravir possesses promising antiviral activity as well as favorable prophylactic efficacy, attributed to its effective mutagenic property of disrupting viral replication. This review discusses the mechanisms of action of Molnupiravir and highlights its clinical utility by disabling SARS-CoV-2 replication, thereby ameliorating COVID-19 severity. Despite relatively few short-term adverse effects thus far, further detailed clinical studies and long-term pharmacovigilance are needed in view of its mutagenic effects.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/analogs & derivatives , Humans , Hydroxylamines , SARS-CoV-2
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166294, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34687900

ABSTRACT

Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/ß1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , Ivermectin/therapeutic use , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Humans , Ivermectin/pharmacology , Karyopherins/metabolism , SARS-CoV-2/physiology
8.
Rev Med Virol ; 32(3): e2300, 2022 05.
Article in English | MEDLINE | ID: mdl-34546610

ABSTRACT

The family of Suppressor of Cytokine Signalling (SOCS) proteins plays pivotal roles in cytokine and immune regulation. Despite their key roles, little attention has been given to the SOCS family as compared to other feedback regulators. To date, SOCS proteins have been found to be exploited by viruses such as herpes simplex virus (HSV), hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, respiratory syncytial virus (RSV), Ebola virus, influenza A virus (IAV) and SARS-CoV, just to name a few. The hijacking and subsequent upregulation of the SOCS proteins upon viral infection, suppress the associated JAK-STAT signalling activities, thereby reducing the host antiviral response and promoting viral replication. Two SOCS protein family members, SOCS1 and SOCS3 are well-studied and their roles in the JAK-STAT signalling pathway are defined as attenuating interferon (IFN) signalling upon viral infection. The upregulation of SOCS protein by SARS-CoV during the early stages of infection implies strong similarity with SARS-CoV-2, given their closely related genomic organisation. Thus, this review aims to outline the plausibility of SOCS protein inhibitors as a potential therapeutic regimen for COVID-19 patients. We also discuss the antagonists against SOCS protein to offer an overview on the previous 'successes' of SOCS protein inhibition in various viral infections that may portray possible clues for COVID-19 disease management.


Subject(s)
COVID-19 , Disease Progression , Suppressor of Cytokine Signaling Proteins , Cytokines/metabolism , Humans , SARS-CoV-2 , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
11.
Virus Genes ; 57(4): 307-317, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34061288

ABSTRACT

The Coronavirus Disease 2019 (COVID-19), a pneumonic disease caused by the SARS Coronavirus 2 (SARS-CoV-2), is the 7th Coronavirus to have successfully infected and caused an outbreak in humans. Genome comparisons have shown that previous isolates, the SARS-related coronavirus (SARSr-CoV), including the SARS-CoV are closely related, yet different in disease manifestation. Several explanations were suggested for the undetermined origin of SARS-CoV-2, in particular, bats, avian and Malayan pangolins as reservoir hosts, owing to the high genetic similarity. The general morphology and structure of all these viral isolates overlap with analogous disease symptoms such as fever, dry cough, fatigue, dyspnoea and headache, very similar to the current SARS-CoV-2. Chest CT scans for SARS-CoV-2, SARS-CoV and MERS-CoV reveal pulmonary lesions, bilateral ground-glass opacities, and segmental consolidation in the lungs, a common pathological trait. With greatly overlapping similarities among the previous coronavirus, the SARS-CoV, it becomes interesting to observe marked differences in disease severity of the SARS-CoV-2 thereby imparting it the ability to rapidly transmit, exhibit greater stability, bypass innate host defences, and increasingly adapt to their new host thereby resulting in the current pandemic. The most recent B.1.1.7, B.1.351 and P.1 variants of SARS-CoV-2, highlight the fact that changes in amino acids in the Spike protein can contribute to enhanced infection and transmission efficiency. This review covers a comparative analysis of previous coronavirus outbreaks and highlights the differences and similarities among different coronaviruses, including the most recent isolates that have evolved to become easily transmissible with higher replication efficiency in humans.


Subject(s)
COVID-19/epidemiology , Coronavirus Infections/epidemiology , SARS-CoV-2/genetics , Animals , COVID-19/immunology , COVID-19/virology , Coronavirus Infections/virology , Disease Outbreaks , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/immunology
13.
Mediators Inflamm ; 2020: 4087315, 2020.
Article in English | MEDLINE | ID: mdl-33376451

ABSTRACT

The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells.


Subject(s)
Interleukin-33/physiology , Oncostatin M/physiology , Pneumonia/etiology , Animals , Female , Interleukin-6/physiology , Mice , Mice, Inbred C57BL , Th2 Cells/immunology
14.
Arthritis Res Ther ; 22(1): 247, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33076985

ABSTRACT

BACKGROUND: There has been a shift in recent years to using ultrasound (US) and magnetic resonance imaging (MRI) as first-line investigations for suspected cranial large vessel vasculitis (LVV) and is a new recommendation by the EULAR 2018 guidelines for imaging in LVV. This cross-sectional study compares the performance of US and MRI and contrast-enhanced magnetic resonance angiography (MRA) for detecting vasculitis in patients with giant cell arteritis (GCA). METHODS: Patients with new-onset or already diagnosed GCA were recruited. The common temporal arteries and supra-aortic large vessels were evaluated by US and MRI/MRA. Blinded experts read the images and applied a dichotomous score (vasculitis: yes/no) in each vessel. RESULTS: Thirty-seven patients with giant cell arteritis (GCA) were recruited. Two patients were excluded. Of the remaining patients, nine had new-onset disease and 26 had established disease. Mean age was 71 years, and median C-reactive protein (CRP) was 7.5 mg/L. The median time between US and MRI was 1 day. Overall, US revealed vasculitic changes more frequently than MRI (p < 0.001). US detected vascular changes in 37% of vessels compared to 21% with MRI. Among patients with chronic disease, US detected vascular changes in 23% of vessels compared to 7% with MRI in (p < 0.001). The same was true for patients with new-onset disease. US detected vasculitic changes in 22% of vessels and MRI detected disease in 6% (p = 0.0004). Compared to contrast-enhanced MRA, US was more sensitive in detecting vasculitic changes in the large arteries, including the axillary, carotid, and subclavian arteries. CONCLUSION: US more frequently detects vasculitic changes in the large arteries compared to contrast-enhanced MRA. When evaluating the cranial vessels, US performs similarly to MRI. This data supports the recommendation that US be considered as a first-line evaluation in patients suspected to have GCA.


Subject(s)
Giant Cell Arteritis , Takayasu Arteritis , Aged , Cross-Sectional Studies , Giant Cell Arteritis/diagnostic imaging , Humans , Magnetic Resonance Imaging , Temporal Arteries , Ultrasonography
15.
Cells ; 9(6)2020 05 27.
Article in English | MEDLINE | ID: mdl-32471168

ABSTRACT

Resistin-like molecule alpha (RELMα) and YM-1 are secreted proteins implicated in murine models of alternatively activated macrophage (AA/M2) accumulation and Th2-skewed inflammation. Since the gp130 cytokine Oncostatin M (OSM) induces a Th2-like cytokine and AA/M2 skewed inflammation in mouse lung, we here investigated regulation of RELMα and YM-1. Transient pulmonary overexpression of OSM by Adenovirus vector (AdOSM) markedly induced RELMα and YM-1 protein expression in total lung. In situ hybridization showed that RELMα mRNA was highly induced in airway epithelial cells (AEC) and was co-expressed with CD68 mRNA in some but not all CD68+ cells in parenchyma. IL-6 overexpression (a comparator gp130 cytokine) induced RELMα, but at significantly lower levels. IL-6 (assessing IL-6-/- mice) was not required, nor was STAT6 (IL-4/13 canonical signalling) for AdOSM-induction of RELMα in AEC. AEC responded directly to OSM in vitro as assessed by pSTAT3 activation. RELMα-deficient mice showed similar inflammatory cell infiltration and cytokine responses to wt in response to AdOSM, but showed less accumulation of CD206+ AA/M2 macrophages, reduced induction of extracellular matrix gene mRNAs for COL1A1, COL3A1, MMP13, and TIMP1, and reduced parenchymal alpha smooth muscle actin. Thus, RELMα is regulated by OSM in AEC and contributes to extracellular matrix remodelling in mouse lung.


Subject(s)
Epithelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-6/metabolism , Lung/cytology , Oncostatin M/metabolism , STAT6 Transcription Factor/metabolism , Adenoviridae/metabolism , Animals , Arginase/metabolism , Cell Count , Cell Proliferation , Cytokines/metabolism , Extracellular Matrix/metabolism , Female , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Lectins/genetics , Lectins/metabolism , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Th2 Cells/metabolism , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism
16.
PLoS One ; 8(2): e55468, 2013.
Article in English | MEDLINE | ID: mdl-23405155

ABSTRACT

Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses resulting in sepsis. We conclude that as an anti-inflammatory agent, ω-3 PUFA supplementation during infection may prove detrimental when host inflammatory responses are critical for survival.


Subject(s)
Colitis/chemically induced , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Fish Oils/pharmacology , Lipopolysaccharides/pharmacology , Sepsis/microbiology , Alkaline Phosphatase/metabolism , Animals , Citrobacter rodentium/metabolism , Colitis/metabolism , Colitis/microbiology , Diet , Dietary Supplements , Dinoprostone/metabolism , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/microbiology , Fatty Acids, Omega-3/toxicity , Fatty Acids, Omega-6/toxicity , Female , Interleukin-15/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL , Sepsis/chemically induced , Sepsis/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...