Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(1): 113629, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38165806

ABSTRACT

The interplay between metabolism and chromatin signaling is implicated in cancer progression. However, whether and how metabolic reprogramming in tumors generates chromatin vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor aberrant activation of the NRF2 antioxidant pathway, which drives aggressive and chemo-resistant disease. Using a chromatin-focused CRISPR screen, we report that NRF2 activation sensitizes LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDACs). This association is observed across cultured cells, mouse models, and patient-derived xenografts. Integrative epigenomic, transcriptomic, and metabolomic analysis demonstrates that HDAC inhibition causes widespread redistribution of H4ac and its reader protein, which transcriptionally downregulates metabolic enzymes. This results in reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest NRF2 activation as a potential biomarker for effective repurposing of HDAC inhibitors to treat solid tumors.


Subject(s)
NF-E2-Related Factor 2 , Neoplasms , Animals , Humans , Mice , Chromatin , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Metabolic Reprogramming , NF-E2-Related Factor 2/metabolism
2.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162970

ABSTRACT

Interplay between metabolism and chromatin signaling have been implicated in cancer initiation and progression. However, whether and how metabolic reprogramming in tumors generates specific epigenetic vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor mutations that cause aberrant activation of the NRF2 antioxidant pathway and drive aggressive and chemo-resistant disease. We performed a chromatin-focused CRISPR screen and report that NRF2 activation sensitized LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDAC). This association was consistently observed across cultured cells, syngeneic mouse models and patient-derived xenografts. HDAC inhibition causes widespread increases in histone H4 acetylation (H4ac) at intergenic regions, but also drives re-targeting of H4ac reader protein BRD4 away from promoters with high H4ac levels and transcriptional downregulation of corresponding genes. Integrative epigenomic, transcriptomic and metabolomic analysis demonstrates that these chromatin changes are associated with reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest that metabolic alterations such as NRF2 activation could serve as biomarkers for effective repurposing of HDAC inhibitors to treat solid tumors.

4.
Cancer Res ; 83(2): 181-194, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36318118

ABSTRACT

The Warburg effect is the major metabolic hallmark of cancer. According to Warburg himself, the consequence of the Warburg effect is cell dedifferentiation. Therefore, reversing the Warburg effect might be an approach to restore cell differentiation in cancer. In this study, we used a mitochondrial uncoupler, niclosamide ethanolamine (NEN), to activate mitochondrial respiration, which induced neural differentiation in neuroblastoma cells. NEN treatment increased the NAD+/NADH and pyruvate/lactate ratios and also the α-ketoglutarate/2-hydroxyglutarate (2-HG) ratio. Consequently, NEN treatment induced promoter CpG island demethylation and epigenetic landscape remodeling, activating the neural differentiation program. In addition, NEN treatment upregulated p53 but downregulated N-Myc and ß-catenin signaling in neuroblastoma cells. Importantly, even under hypoxia, NEN treatment remained effective in inhibiting 2-HG generation, promoting DNA demethylation, and suppressing hypoxia-inducible factor signaling. Dietary NEN intervention reduced tumor growth rate, 2-HG levels, and expression of N-Myc and ß-catenin in tumors in an orthotopic neuroblastoma mouse model. Integrative analysis indicated that NEN treatment upregulated favorable prognosis genes and downregulated unfavorable prognosis genes, which were defined using multiple neuroblastoma patient datasets. Altogether, these results suggest that mitochondrial uncoupling is an effective metabolic and epigenetic therapy for reversing the Warburg effect and inducing differentiation in neuroblastoma. SIGNIFICANCE: Targeting cancer metabolism using the mitochondrial uncoupler niclosamide ethanolamine leads to methylome reprogramming and differentiation in neuroblastoma, providing a therapeutic opportunity to reverse the Warburg effect and suppress tumor growth. See related commentary by Byrne and Bell, p.167.


Subject(s)
Cell Differentiation , Epigenome , Neuroblastoma , Warburg Effect, Oncologic , Animals , Mice , beta Catenin/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Epigenome/genetics , Epigenome/physiology , Ethanolamine/pharmacology , Ethanolamine/therapeutic use , Ethanolamines/therapeutic use , Hypoxia/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Niclosamide/pharmacology , Warburg Effect, Oncologic/drug effects , Mitochondria/drug effects , Mitochondria/physiology
5.
Cell Death Dis ; 11(2): 102, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029721

ABSTRACT

Despite the fact that Otto H. Warburg discovered the Warburg effect almost one hundred years ago, why cancer cells waste most of the glucose carbon as lactate remains an enigma. Warburg proposed a connection between the Warburg effect and cell dedifferentiation. Hypoxia is a common tumor microenvironmental stress that induces the Warburg effect and blocks tumor cell differentiation. The underlying mechanism by which this occurs is poorly understood, and no effective therapeutic strategy has been developed to overcome this resistance to differentiation. Using a neuroblastoma differentiation model, we discovered that hypoxia repressed cell differentiation through reducing cellular acetyl-CoA levels, leading to reduction of global histone acetylation and chromatin accessibility. The metabolic switch triggering this global histone hypoacetylation was the induction of pyruvate dehydrogenase kinases (PDK1 and PDK3). Inhibition of PDKs using dichloroacetate (DCA) restored acetyl-CoA generation and histone acetylation under hypoxia. Knocking down PDK1 induced neuroblastoma cell differentiation, highlighting the critical role of PDK1 in cell fate control. Importantly, acetate or glycerol triacetate (GTA) supplementation restored differentiation markers expression and neuron differentiation under hypoxia. Moreover, ATAC-Seq analysis demonstrated that hypoxia treatment significantly reduced chromatin accessibility at RAR/RXR binding sites, which can be restored by acetate supplementation. In addition, hypoxia-induced histone hypermethylation by increasing 2-hydroxyglutarate (2HG) and reducing α-ketoglutarate (αKG). αKG supplementation reduced histone hypermethylation upon hypoxia, but did not restore histone acetylation or differentiation markers expression. Together, these findings suggest that diverting pyruvate flux away from acetyl-CoA generation to lactate production is the key mechanism that Warburg effect drives dedifferentiation and tumorigenesis. We propose that combining differentiation therapy with acetate/GTA supplementation might represent an effective therapy against neuroblastoma.


Subject(s)
Acetates/pharmacology , Antineoplastic Agents/pharmacology , Chromatin Assembly and Disassembly/drug effects , Neuroblastoma/drug therapy , Neurogenesis/drug effects , Warburg Effect, Oncologic/drug effects , Acetylation , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Male , Mice , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuronal Outgrowth/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Signal Transduction , Tumor Burden/drug effects , Tumor Hypoxia , Tumor Microenvironment , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...