Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Xenobiotica ; : 1-13, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647387

ABSTRACT

Background: Monomethyl auristatin E (MMAE) has been used as a payload for several Food and Drug Administration (FDA) approved antibody-drug conjugates (ADCs). It is known that MMAE is released from the ADC following binding, internalization and proteolytic degradation in target tissues. A striking discrepancy in systemic MMAE levels has been observed across species with 50-fold higher MMAE levels in human than that in rodents when normalized by ADC dose with unknown mechanism.Hypothesis and purpose: Multiple factors could affect systemic MMAE levels such as production and elimination of unconjugated MMAE following ADC dosing. In this study, we have explored whether MMAE displays differential red blood cell (RBC) partitioning across species that may contribute to the different MMAE levels seen between human and animals.Experiments: To determine MMAE RBC partitioning, tritium labeled MMAE ([3H]-MMAE) was incubated in whole blood from mice, rats, monkeys and humans in vitro, then RBC partitioning was determined and compared across species. To test whether MMAE released from the ADC would show any difference in RBC partitioning, pinatuzumab vedotin or polatuzumab vedotin was administered to mice, rats, and monkeys. MMAE levels were measured in both blood and plasma, and the ratios of MMAE levels were calculated as blood-to-plasma ratio (in vivo RBC partitioning).Results: Our in vitro data showed that unconjugated MMAE has a species-dependent RBC partitioning with strong RBC partitioning in mouse, rat, followed by monkey blood, whereas minimal RBC partitioning was seen in human blood. Incubation of 2 nM of MMAE in mouse blood resulted in a blood-to-plasma ratio of 11.8 ± 0.291, followed by rat, monkey, and human at 2.36 ± 0.0825, 1.57 ± 0.0250, and 0.976 ± 0.0620, respectively. MMAE RBC partitioning is also concentration-dependent, with an inverse relationship between RBC partitioning and MMAE concentration (higher RBC partitioning at lower concentration). In vivo dosing of pinatuzumab vedotin in mouse displayed systemic MMAE at about a 5-fold higher blood concentration compared to plasma concentration once MMAE reached a pseudo-equilibrium, while systemic MMAE from blood and plasma concentration showed a 1.65-fold difference in rat.Implication and conclusion: These data demonstrated that MMAE has a distinct RBC partitioning across different species, which may contribute to, at least in part, to the differential in the systemic MMAE levels observed in vivo between preclinical and clinical studies. These findings highlight the importance of fully characterizing the ADME properties of both the ADC and its payload, to enable better translation from animals to human for ADC development.

2.
J Pharm Sci ; 112(11): 2910-2920, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37429356

ABSTRACT

MTBT1466A is a high-affinity TGFß3-specific humanized IgG1 monoclonal antibody with reduced Fc effector function, currently under investigation in clinical trials as a potential anti-fibrotic therapy. Here, we characterized the pharmacokinetics (PK) and pharmacodynamics (PD) of MTBT1466A in mice and monkeys and predicted the PK/PD of MTBT1466A in humans to guide the selection of the first-in-human (FIH) starting dose. MTBT1466A demonstrated a typical IgG1-like biphasic PK profile in monkeys, and the predicted human clearance of 2.69 mL/day/kg and t1/2 of 20.4 days are consistent with those expected for a human IgG1 antibody. In a mouse model of bleomycin-induced lung fibrosis, changes in expression of TGFß3-related genes, serpine1, fibronectin-1, and collagen 1A1 were used as PD biomarkers to determine the minimum pharmacologically active dose of 1 mg/kg. Unlike in the fibrosis mouse model, evidence of target engagement in healthy monkeys was only observed at higher doses. Using a PKPD-guided approach, the recommended FIH dose of 50 mg, IV, provided exposures that were shown to be safe and well tolerated in healthy volunteers. MTBT1466A PK in healthy volunteers was predicted reasonably well using a PK model with allometric scaling of PK parameters from monkey data. Taken together, this work provides insights into the PK/PD behavior of MTBT1466A in preclinical species, and supports the translatability of the preclinical data into the clinic.

3.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414872

ABSTRACT

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

4.
J Clin Med ; 10(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806916

ABSTRACT

Polatuzumab vedotin (or POLIVY®), an antibody-drug conjugate (ADC) composed of a polatuzumab monoclonal antibody conjugated to monomethyl auristatin E (MMAE) via a cleavable dipeptide linker, has been approved by the United States Food and Drug Administration (FDA) for the treatment of diffuse large B-cell lymphoma (DLBCL). To support the clinical development of polatuzumab vedotin, we characterized the distribution, catabolism/metabolism, and elimination properties of polatuzumab vedotin and its unconjugated MMAE payload in Sprague Dawley rats. Several radiolabeled probes were developed to track the fate of different components of the ADC, with 125I and 111In used to label the antibody component and 3H to label the MMAE payload of the ADC. Following a single intravenous administration of the radiolabeled probes into normal or bile-duct cannulated rats, blood, various tissues, and excreta samples were collected over 7-14 days post-dose and analyzed for radioactivity and to characterize the metabolites/catabolites. The plasma radioactivity of polatuzumab vedotin showed a biphasic elimination profile similar to that of unconjugated polatuzumab but different from unconjugated radiolabeled MMAE, which had a fast clearance. The vast majority of the radiolabeled MMAE in plasma remained associated with antibodies, with a minor fraction as free MMAE and MMAE-containing catabolites. Similar to unconjugated mAb, polatuzumab vedotin showed a nonspecific distribution to multiple highly perfused organs, including the lungs, heart, liver, spleen, and kidneys, where the ADC underwent catabolism to release MMAE and other MMAE-containing catabolites. Both polatuzumab vedotin and unconjugated MMAE were mainly eliminated through the biliary fecal route (>90%) and a small fraction (<10%) was eliminated through renal excretion in the form of catabolites/metabolites, among which, MMAE was identified as the major species, along with several other minor species. These studies provided significant insight into ADC's absorption, distribution, metabolism, and elimination (ADME) properties, which supports the clinical development of POLIVY.

5.
Drug Metab Dispos ; 48(12): 1247-1256, 2020 12.
Article in English | MEDLINE | ID: mdl-33020064

ABSTRACT

Anti-Ly6E-seco-cyclopropabenzindol-4-one dimer antibody-drug conjugate (ADC) has been reported to form an adduct with α1-microglobulin (A1M) in animal plasma, but with unknown impact on ADC PK and tissue distribution. In this study, we compared the PK and tissue distribution of anti-Ly6E ADC with unconjugated anti-Ly6E mAb in rodents and monkeys. For PK studies, animals received an intravenous administration of anti-Ly6E ADC or unconjugated anti-Ly6E mAb. Plasma samples were analyzed for total antibody (Tab) levels and A1M adduct formation. PK parameters were generated from dose-normalized plasma concentrations. Tissue distribution was determined in tumor-bearing mice after a single intravenous dosing of radiolabeled ADC or mAb. Tissue radioactivity levels were analyzed using a gamma counter. The impact of A1M adduct formation on target cell binding was assessed in an in vitro cell binding assay. The results show that ADC Tab clearance was slower than that of mAb in mice and rats but faster than mAb in monkeys. Correspondingly, the formation of A1M adduct appeared to be faster and higher in mice, followed by rats, and slowest in monkeys. Although ADC tended to show an overall lower distribution to normal tissues, it had a strikingly reduced distribution to tumors compared with mAb, likely due to A1M adduct formation interfering with target binding, as demonstrated by the in vitro cell binding assay. Together, these data 1) demonstrate that anti-Ly6E ADC that forms A1M adduct had slower systemic clearance with strikingly reduced tumor distribution and 2) highlight the importance of selecting an appropriate linker-drug for successful ADC development. SIGNIFICANCE STATEMENT: Anti-lymphocyte antigen 6 complex, locus E, ADC with seco-cyclopropabenzindol-4-one-dimer payload formed adduct with A1M, which led to a decrease in systemic clearance but also attenuated tumor distribution. These findings demonstrate the importance of selecting an appropriate linker-drug for ADC development and also highlight the value of a mechanistic understanding of ADC biotransformation, which could provide insight into ADC molecule design, optimization, and selection.


Subject(s)
Alpha-Globulins/metabolism , Antineoplastic Agents, Immunological/pharmacokinetics , Immunoconjugates/pharmacokinetics , Neoplasms/drug therapy , Animals , Antigens, Surface , Antineoplastic Agents, Immunological/administration & dosage , Cell Line, Tumor , Female , GPI-Linked Proteins/antagonists & inhibitors , Humans , Immunoconjugates/administration & dosage , Macaca fascicularis , Metabolic Clearance Rate , Mice , Neoplasms/pathology , Rats , Tissue Distribution , Xenograft Model Antitumor Assays
6.
Drug Metab Dispos ; 48(11): 1161-1168, 2020 11.
Article in English | MEDLINE | ID: mdl-32839277

ABSTRACT

Invasive Staphylococcus aureus infection is a leading cause of infectious disease-related deaths because S. aureus survives within host phagocytic cells, from which the bacteria are not adequately eliminated using current antibiotic treatments. Anti-S. aureus THIOMAB antibody-antibiotic conjugate (TAC), an anti-S. aureus antibody conjugated with antibiotic payload dmDNA31, was designed to deliver antibiotics into phagocytes, thereby killing intracellular S. aureus Herein, we present the distribution, metabolism/catabolism, and elimination properties for this modality. The tissue distribution of TAC and the release and elimination of its payload dmDNA31 were characterized in rats using multiple approaches. Intravenous injection of unconjugated [14C]dmDNA31 to rats resulted in a rapid clearance in both systemic circulation and tissues, with biliary secretion as the major route of elimination. Six major metabolites were identified. When [14C]dmDNA31 was conjugated to an antibody as TAC and administered to rat intravenously, a sustained exposure was observed in both systemic circulation and tissues. The dmDNA31 in blood and tissues mainly remained in conjugated form after administering TAC, although minimal deconjugation of dmDNA31 from TAC was also observed. Several TAC catabolites were identified, which were mainly eliminated through the biliary-fecal route, with dmDNA31 and deacetylated dmDNA31 as the most abundant catabolites. In summary, these studies provide a comprehensive characterization of the distribution, metabolism/catabolism, and elimination properties of TAC. These data fully support further clinical development of TAC for the invasive and difficult-to-treat S. aureus infection. SIGNIFICANCE STATEMENT: The present studies provide a comprehensive investigation of the absorption, distribution, metabolism/catabolism, and elimination of the first antibody-antibiotic conjugate developed for the treatment of an infectious disease. Although many antibody-drug conjugates are in development for various disease indications, only a limited amount of absorption, distribution, metabolism/catabolism, and elimination information is available in the literature. This study demonstrates the use of radiolabeling technology to delineate the absorption, distribution, metabolism/catabolism, and elimination properties of a complex modality and help address the key questions related to clinical pharmacological studies.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Antibodies, Bacterial/pharmacology , Immunoconjugates/pharmacokinetics , Animals , Anti-Bacterial Agents/administration & dosage , Female , Humans , Immunoconjugates/administration & dosage , Injections, Intravenous , Male , Models, Animal , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/immunology , Tissue Distribution
7.
MAbs ; 11(6): 1122-1138, 2019.
Article in English | MEDLINE | ID: mdl-31122132

ABSTRACT

IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Recombinant Fusion Proteins/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/genetics , Dogs , Female , Glycosylation , Half-Life , Humans , Immunoglobulin A/genetics , Immunoglobulin G/genetics , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Recombinant Fusion Proteins/genetics
8.
MAbs ; 10(8): 1312-1321, 2018.
Article in English | MEDLINE | ID: mdl-30183491

ABSTRACT

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Subject(s)
Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/metabolism , Acute Disease , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Area Under Curve , Benzodiazepines/immunology , Benzodiazepines/therapeutic use , Humans , Immunoconjugates/immunology , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid/blood , Macaca fascicularis , Metabolic Clearance Rate , Mice , Pyrroles/immunology , Pyrroles/therapeutic use , Rats , Receptors, Mitogen/immunology , Species Specificity
9.
Invest Ophthalmol Vis Sci ; 56(11): 6991-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26513505

ABSTRACT

PURPOSE: In this work, we assessed the ability of fluorophotometry to measure the vitreal pharmacokinetics (PK) of fluorescently-labeled ranibizumab in the rabbit after intravitreal injection. We compared these values to those obtained using enzyme-linked immunosorbent assays (ELISA). Data obtained in this study were also compared to historical ranibizumab ocular PK data, either measured in-house or previously published. METHODS: Three individual in vivo studies were performed in New Zealand White rabbits to assess the feasibility of using fluorophotometry to measure rabbit ocular PK of ranibizumab; explore the dynamic range of dosing fluorescently-labeled ranibizumab; and directly compare ranibizumab concentrations and calculated PK parameters measured by vitreal fluorophotometry to those measured using ELISA. RESULTS: In direct comparisons between fluorophotometry and ELISA, the calculated clearance (CL) values were 0.26 and 0.21 mL/day, the volumes of distribution at steady state (Vss) were 0.80 and 0.94 mL, the half-lives (t1/2) were 3.1 and 2.9 days and the dose normalized areas under the curve (AUC/D) were 4.7 and 3.9 µg·day/mL/µg, respectively. These values fell within the ranges of 0.13 to 0.44 mL/day for CL, 0.5 to 1.8 mL for Vss, 2.8 to 3.5 days for t1/2, and 2.3 to 7.9 µg·day/mL/µg for AUC/D that have been either measured previously in-house or published elsewhere. CONCLUSIONS: Although not suitable for measuring retinal concentrations, fluorophotometry is a valuable, noninvasive method to measure vitreous concentrations of protein therapeutics after intravitreal injection.


Subject(s)
Fluorophotometry , Immunologic Factors/pharmacokinetics , Ranibizumab/pharmacokinetics , Vitreous Body/metabolism , Animals , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Half-Life , Immunologic Factors/administration & dosage , Immunologic Factors/analysis , Intravitreal Injections , Male , Rabbits , Ranibizumab/administration & dosage , Ranibizumab/analysis , Vitreous Body/chemistry
10.
Bioorg Med Chem Lett ; 25(18): 4011-5, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26235950

ABSTRACT

Antagonists of the TRPV4 receptor were identified using a focused screen, followed by a limited optimization program. The leading compounds obtained from this exercise, RN-1665 23 and RN-9893 26, showed moderate oral bioavailability when dosed to rats. The lead molecule, RN-9893 26, inhibited human, rat and murine variants of TRPV4, and showed excellent selectivity over related TRP receptors, such as TRPV1, TRPV3 and TRPM8. The overall profile for RN-9893 may permit its use as a proof-of-concept probe for in vivo applications.


Subject(s)
Piperazines/administration & dosage , Piperazines/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship , TRPV Cation Channels/metabolism
11.
MAbs ; 6(6): 1631-7, 2014.
Article in English | MEDLINE | ID: mdl-25484068

ABSTRACT

Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distribution of anti-DLL4 were determined in athymic nude mice after administration of single intravenous (IV) doses. In the tissue distribution study, radiolabeled anti-DLL4 (mixture of (125)Iodide and (111)Indium) was administered in the presence of increasing amounts of unlabeled anti-DLL4. Dose ranging anti-DLL4 anti-tumor efficacy was evaluated in athymic nude mice bearing MV522 human lung tumor xenografts. Anti-DLL4 had nonlinear PK in mice with rapid serum clearance at low doses and slower clearance at higher doses suggesting the involvement of target mediated clearance. Consistent with the PK data, anti-DLL4 was shown to specifically distribute to several normal tissues known to express DLL4 including the lung and liver. Maximal efficacy in the xenograft model was seen at doses ≥ 10 mg/kg when tissue sinks were presumably saturated, consistent with the PK and tissue distribution profiles. These findings highlight the importance of mechanistic understanding of antibody disposition to enable dosing strategies for maximizing efficacy.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Membrane Proteins/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/blood , Antibodies, Monoclonal, Humanized/immunology , Area Under Curve , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Indium Radioisotopes/pharmacokinetics , Intracellular Signaling Peptides and Proteins/immunology , Iodine Radioisotopes/pharmacokinetics , Lung Neoplasms/immunology , Membrane Proteins/immunology , Metabolic Clearance Rate , Mice, Nude , Tissue Distribution , Treatment Outcome , Xenograft Model Antitumor Assays
12.
J Med Chem ; 57(19): 7890-9, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25191794

ABSTRACT

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/chemical synthesis , Immunoconjugates/pharmacology , Maytansine/analogs & derivatives , Protein Engineering , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Trastuzumab
13.
MAbs ; 6(3): 689-96, 2014.
Article in English | MEDLINE | ID: mdl-24572100

ABSTRACT

The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Receptors, Fc/metabolism , Animals , Animals, Newborn , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/genetics , CHO Cells , Cricetinae , Cricetulus , Female , Genetic Variation , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Indium Radioisotopes/administration & dosage , Indium Radioisotopes/pharmacokinetics , Iodine Radioisotopes/administration & dosage , Iodine Radioisotopes/pharmacokinetics , Mice , Proteolysis , Receptors, Fc/genetics , Tissue Distribution
14.
J Med Chem ; 56(23): 9418-26, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24131491

ABSTRACT

A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/metabolism , Dipeptides/chemical synthesis , Heterocyclic Compounds, 1-Ring/chemical synthesis , Immunoconjugates/chemistry , Succinimides/chemical synthesis , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Coordination Complexes/metabolism , Dipeptides/metabolism , Heterocyclic Compounds, 1-Ring/metabolism , Immunoconjugates/metabolism , Indium Radioisotopes , Mice , Radioimmunotherapy , Succinimides/metabolism , Xenograft Model Antitumor Assays
15.
Anal Biochem ; 430(2): 171-8, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22929697

ABSTRACT

Short interfering RNA (siRNA) has therapeutic potential. However, efficient delivery is a formidable task. To facilitate delivery of siRNA into cells, we covalently conjugated siRNA to antibodies that bind to cell surface proteins and internalize. Understanding how these antibody-siRNA conjugates function in vivo requires pharmacokinetic analysis. Thus, we developed a simple real-time antigen capture reverse transcription-polymerase chain reaction (RT-PCR) assay to detect intact antibody-siRNA conjugates. Biotinylated antigen bound to streptavidin-coated PCR tubes was used to capture antibody-siRNA conjugate. The captured antibody-siRNA conjugate was then reverse-transcribed in the same tube, avoiding a sample transfer step. This reproducible assay had a wide standard curve range of 0.029 to 480ng/ml and could detect as low as 0.58ng/ml antibody-siRNA conjugates in mouse serum. The presence of unconjugated antibody that could be generated from siRNA degradation in vivo did not affect the assay as long as the total antibody concentration in the antigen capture step did not exceed 480ng/ml. Using this assay, we observed a more rapid decrease in serum antibody-siRNA conjugate concentrations than the total antibody concentrations in mice dosed with antibody-siRNA conjugates, suggesting loss of siRNA from the antibody. This assay is useful for optimizing antibody-siRNA and likely aptamer-siRNA conjugates to improve pharmacokinetics and aid siRNA delivery.


Subject(s)
Antibodies/analysis , Antigens/immunology , RNA, Small Interfering/analysis , Reverse Transcriptase Polymerase Chain Reaction , Animals , Antibodies/blood , Antibodies/chemistry , Antibodies/immunology , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , RNA, Small Interfering/blood , RNA, Small Interfering/chemistry
16.
Clin Chem ; 53(2): 241-50, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200135

ABSTRACT

BACKGROUND: We previously used ProteinChip array profiling analysis to discover a serum biomarker associated with nasopharyngeal carcinoma (NPC). In this study, we used the same method to examine other biomarkers associated with NPC and response to chemotherapy (CT) in NPC patients. METHODS: We performed ProteinChip array analysis in 209 serum samples from 66 relapsed patients before and after salvage CT with gemcitabine and cisplatin or etoposide and cisplatin combinations, 11 patients in remission, and 35 healthy individuals. Intensities of the biomarker peaks were correlated with CT response of the patients and other clinical parameters. RESULTS: We discovered 13 candidate biomarkers associated with different clinical parameters. Two biomarkers (2803 and 3953 Da) were significantly increased in patients compared with controls at all stages of disease. Analysis of pre- and post-CT paired serum samples revealed 7 biomarkers correlated with impact of CT. Of these 7 biomarkers, 2 (2509 and 2756 Da) were significantly increased and 5 (7588, 7659, 7765, 7843, and 8372 Da) were significantly decreased post-CT in either 1 or both CT cohorts. Four biomarkers from pre-CT sera were correlated with CT response, with 3 (2950, 13 510, and 14 855 Da) being significantly decreased and 1 (6701 Da) significantly increased in patients who did not respond to CT. Tandem mass spectrometric sequencing and/or immunoaffinity capture assay identified the 3953 Da biomarker as a fragment of interalpha-trypsin inhibitor precursor and 7765 Da biomarker as platelet factor-4. CONCLUSIONS: Treatment-associated serum biomarkers found might serve to triage NPC patients for appropriate CT treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/blood , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/drug therapy , Adult , Alpha-Globulins/analysis , Cisplatin/therapeutic use , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Etoposide/administration & dosage , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Platelet Factor 4/analysis , Protein Array Analysis , Protein Precursors/blood , Salvage Therapy , Gemcitabine
17.
Clin Cancer Res ; 10(1 Pt 1): 43-52, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14734450

ABSTRACT

PURPOSE: Nasopharyngeal cancer (NPC) is a common cancer in Hong Kong, and relapse can occur frequently. Using protein chip profiling analysis, we aimed to identify serum biomarkers that were useful in the diagnosis of relapse in NPC. EXPERIMENTAL DESIGN: Profiling analysis was performed on 704 sera collected from 42 NPC patients, 39 lung cancer patients, 30 patients with the benign metabolic disorder thyrotoxicosis (TX), and 35 normal individuals (NM). Protein profile in each NPC patient during clinical follow up was correlated with the relapse status. RESULTS: Profiling analysis identified two biomarkers with molecular masses of 11.6 and 11.8 kDa, which were significantly elevated in 22 of 31 (71%) and 21 of 31 (68%) NPC patients, respectively, at the time of relapse (RP) as compared with 11 patients in complete remission (CR; RP versus CR, P = 0.009), 30 TX (RP versus TX, P < 0.001), or 35 NM (RP versus NM, P < 0.001). The markers were also elevated in 16 of 39 (41%) lung cancer patients at initial diagnosis. By tryptic digestion, followed by tandem mass spectrometry fragmentation, the markers were identified as two isoforms of serum amyloid A (SAA) protein. Monitoring the patients longitudinally for SAA level both by protein chip and immunoassay showed a dramatic SAA increase, which correlated with relapse and a drastic fall correlated with response to salvage chemotherapy. Serum SAA findings were compared with those of serum Epstein-Barr virus DNA in three relapsed patients showing a similar correlation with relapse and chemo-response. CONCLUSIONS: SAA could be a useful biomarker to monitor relapse of NPC.


Subject(s)
Biomarkers, Tumor/blood , Nasopharyngeal Neoplasms/blood , Neoplasm Recurrence, Local/diagnosis , Proteomics , Serum Amyloid A Protein/metabolism , Adult , DNA, Viral/blood , Epstein-Barr Virus Infections/virology , Female , Follow-Up Studies , Herpesvirus 4, Human/genetics , Hong Kong , Humans , Longitudinal Studies , Lung/metabolism , Lung/pathology , Lung Neoplasms/blood , Lung Neoplasms/secondary , Lung Neoplasms/virology , Male , Mass Spectrometry , Middle Aged , Nasopharyngeal Neoplasms/secondary , Nasopharyngeal Neoplasms/virology , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/virology , Polymerase Chain Reaction , Prospective Studies , Proteome , Remission Induction , Thyrotoxicosis/blood , Thyrotoxicosis/virology
18.
Clin Chem ; 49(5): 752-60, 2003 May.
Article in English | MEDLINE | ID: mdl-12709366

ABSTRACT

BACKGROUND: Detection of hepatocellular carcinoma (HCC) in patients with chronic liver disease (CLD) is difficult. We investigated the use of comprehensive proteomic profiling of sera to differentiate HCC from CLD. METHODS: Proteomes in sera from 20 CLD patients with alpha-fetoprotein (AFP) <500 microg/L (control group) and 38 HCC patients (disease group) were profiled by anion-exchange fractionation (first dimension), two types (IMAC3 copper and WCX2) of ProteinChip Arrays (second dimension), and time-of-flight mass spectrometry (third dimension). Bioinformatic tests were used to identify tumor-specific proteomic features and to estimate the values of the tumor-specific proteomic features in the diagnosis of HCC. Cross-validation was performed, and we also validated the models with pooled sera from the control and disease groups, serum from a CLD patient with AFP >500 microg/L, and postoperative sera from two HCC patients. RESULTS: Among 2384 common serum proteomic features, 250 were significantly different between the HCC and CLD cases. Two-way hierarchical clustering differentiated HCC and CLD cases. Most HCC cases with advanced disease were clustered together and formed two subgroups that contained significantly more cases with lymph node invasion or distant metastasis. For differentiation of HCC and CLD by an artificial network (ANN), the area under the ROC curve was 0.91 (95% confidence interval, 0.82-1.01; P <0.0005) for all cases and 0.954 (95% confidence interval, 0.881-1.027; P <0.0005) for cases with nondiagnostic serum AFP (<500 microg/L). At a specificity of 90%, the sensitivity was 92%. Both cluster analysis and ANN correctly classified the pooled serum samples, the CLD serum sample with increased AFP, and the HCC patient in complete remission. CONCLUSION: Tumor-specific proteomic signatures may be useful for detection and classification of hepatocellular cancers.


Subject(s)
Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/chemistry , Liver Neoplasms/blood , Liver Neoplasms/chemistry , Proteome/analysis , Carcinoma, Hepatocellular/pathology , Cluster Analysis , Humans , Liver Neoplasms/pathology , Lymphatic Metastasis , Molecular Weight , Protein Array Analysis , Proteome/chemistry , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...