Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
2.
Brain Behav Immun ; 110: 185-194, 2023 05.
Article in English | MEDLINE | ID: mdl-36863492

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is associated with marked functional impairments along with increased rate of suicide. Although there is ample evidence for the involvement of inflammatory processes and microglia activation in the pathophysiology of BD, the mechanisms that regulate these cells in BD patients, and particularly the role of microglia checkpoints, is still unclear. METHODS: Immunohistochemical analyses of hippocampal sections from post-mortem brains of 15 BD patients and 12 control subjects were used to assess microglia density, by staining the microglia-specific receptor P2RY12, and microglia activation, by staining the activation marker MHC II. Given recent findings on the involvement of LAG3, which interacts with MHC II and serves as a negative microglia checkpoint, in depression and electroconvulsive therapy, we assessed the levels of LAG3 expression and their correlations with microglia density and activation. RESULTS: There were no overall differences between BD patients and controls, but BD patients who committed suicide (N = 9) displayed a significant elevation in the overall microglia density and the density of MHC II-labeled microglia (but not other MHC II-labeled cells), compared with no suicide BD patients (N = 6) and controls. Furthermore, the percent of microglia expressing LAG3 was significantly reduced only in suicidal BD patients, with significant negative correlations between microglial LAG3 expression levels and the density of microglia, in general, and activated microglia, in particular. CONCLUSION: Suicidal BD patients exhibit microglia activation, which is possibly mediated by reduced LAG3 checkpoint expression, suggesting that anti-microglial therapeutics, including LAG3 modulators, may be beneficial for this subgroup of patients.


Subject(s)
Bipolar Disorder , Suicide , Humans , Bipolar Disorder/metabolism , Brain/metabolism , Hippocampus/metabolism , Lymphocytes/metabolism
4.
Article in English | MEDLINE | ID: mdl-36520610

ABSTRACT

Background: Ample research shows that anti-inflammatory drugs, particularly celecoxib, exert antidepressant effects, especially in patients with microglia activation. However, substantial cardiovascular adverse effects limit celecoxib's usefulness. Given that cannabidiol (CBD) exerts anti-inflammatory, microglia-suppressive, and antidepressant effects, we hypothesized that it may potentiate the therapeutic effects of celecoxib. Methods: The effects of celecoxib, CBD, and their combination were examined in murine models of antidepressant- and anxiolytic-like behavioral responsiveness, including the forced swim test (FST), elevated plus maze (EPM), lipopolysaccharide (LPS)-induced neuroinflammation, and chronic social defeat stress (CSDS), as well as in microglia cell cultures. Results: Acute administration of a combination of celecoxib plus CBD, at doses that had no effects by themselves (10 and 5 mg/kg, respectively), produced significant antidepressant- and anxiolytic-like effects in the FST and EPM, in male and female mice. In the LPS model, combinations of celecoxib (10 or 20 mg/kg) plus CBD (30 mg/kg) reversed the anxiety-like behavior in the open-field test (OFT) and anhedonia in the sucrose preference test (SPT), with minimal effects of celecoxib or CBD by themselves. In the CSDS paradigm, a combination of celecoxib plus CBD (each at 30 mg/kg) reversed the deficits in the OFT, EPM, social exploration, and SPT, whereas celecoxib or CBD by themselves had partial effects. In BV2 microglia cultures stimulated with LPS or α-synuclein, CBD markedly potentiated the suppressive effects of celecoxib over TNFα (tumor necrosis factor-α) and IL (interleukin)-1ß secretion. Conclusions: Combinations of celecoxib plus CBD produce efficacious antidepressant- and anxiolytic-like effects, which may depend on their synergistic microglia-suppressive effects.

5.
Neuron ; 110(3): 363-365, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35114108

ABSTRACT

This NeuroView is intended for graduate students who are not sure how to choose or what to expect from a mentor as well as mentors who are uncertain what to give mentees. Two principal investigators and a current mentee will share their perspectives on this bidirectional relationship.


Subject(s)
Mentoring , Mentors , Humans , Program Evaluation , Students
6.
Mol Psychiatry ; 27(2): 1120-1135, 2022 02.
Article in English | MEDLINE | ID: mdl-34650207

ABSTRACT

Despite evidence implicating microglia in the etiology and pathophysiology of major depression, there is paucity of information regarding the contribution of microglia-dependent molecular pathways to antidepressant procedures. In this study, we investigated the role of microglia in a mouse model of depression (chronic unpredictable stress-CUS) and its reversal by electroconvulsive stimulation (ECS), by examining the effects of microglia depletion with the colony stimulating factor-1 antagonist PLX5622. Microglia depletion did not change basal behavioral measures or the responsiveness to CUS, but it completely abrogated the therapeutic effects of ECS on depressive-like behavior and neurogenesis impairment. Treatment with the microglia inhibitor minocycline concurrently with ECS also diminished the antidepressant and pro-neurogenesis effects of ECS. Hippocampal RNA-Seq analysis revealed that ECS significantly increased the expression of genes related to neurogenesis and dopamine signaling, while reducing the expression of several immune checkpoint genes, particularly lymphocyte-activating gene-3 (Lag3), which was the only microglial transcript significantly altered by ECS. None of these molecular changes occurred in microglia-depleted mice. Immunohistochemical analyses showed that ECS reversed the CUS-induced changes in microglial morphology and elevation in microglial LAG3 receptor expression. Consistently, either acute or chronic systemic administration of a LAG3 monoclonal antibody, which readily penetrated into the brain parenchyma and was found to serve as a direct checkpoint blocker in BV2 microglia cultures, rapidly rescued the CUS-induced microglial alterations, depressive-like symptoms, and neurogenesis impairment. These findings suggest that brain microglial LAG3 represents a promising target for novel antidepressant therapeutics.


Subject(s)
Depressive Disorder, Major , Microglia , Animals , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Hippocampus/metabolism , Mice , Microglia/metabolism , Neurogenesis/physiology
7.
Biomolecules ; 10(6)2020 06 03.
Article in English | MEDLINE | ID: mdl-32503154

ABSTRACT

Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble 'readthrough' acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.


Subject(s)
Cholinergic Agents/metabolism , Glutamic Acid/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Animals , Male , Mice , Mice, Inbred Strains , Mice, Transgenic
8.
Elife ; 62017 12 18.
Article in English | MEDLINE | ID: mdl-29251592

ABSTRACT

Microglia play important roles in perinatal neuro- and synapto-genesis. To test the role of microglia in these processes during adulthood, we examined the effects of microglia depletion, via treatment of mice with the CSF-1 receptor antagonist PLX5622, and abrogated neuronal-microglial communication in CX3C receptor-1 deficient (Cx3cr1-/-) mice. Microglia depletion significantly lowered spine density in young (developing) but not mature adult-born-granule-cells (abGCs) in the olfactory bulb. Two-photon time-lapse imaging indicated that microglia depletion reduced spine formation and elimination. Functionally, odor-evoked responses of mitral cells, which are normally inhibited by abGCs, were increased in microglia-depleted mice. In Cx3cr1-/- mice, abGCs exhibited reduced spine density, dynamics and size, concomitantly with reduced contacts between Cx3cr1-deficient microglia and abGCs' dendritic shafts, along with increased proportion of microglia-contacted spines. Thus, during adult neurogenesis, microglia regulate the elimination (pruning), formation, and maintenance of synapses on newborn neurons, contributing to the functional integrity of the olfactory bulb circuitry.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Cell Differentiation , Microglia/physiology , Neurogenesis , Olfactory Bulb/growth & development , Signal Transduction , Animals , CX3C Chemokine Receptor 1/genetics , Mice , Mice, Knockout , Time-Lapse Imaging
9.
Brain Behav Immun ; 61: 184-196, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27890560

ABSTRACT

Clinical studies suggest that key genetic factors involved in stress resilience are related to the innate immune system. In the brain, this system includes microglia cells, which play a major role in stress responsiveness. Consistently, mice with deletion of the CX3CR1 gene (CX3CR1-/- mice), which in the brain is expressed exclusively by microglia, exhibit resilience to chronic stress. Here, we compared the emotional, cognitive, neurogenic and microglial responses to chronic unpredictable stress (CUS) between CX3CR1-/- and wild type (WT) mice. This was followed by hippocampal whole transcriptome (RNA-seq) analysis. We found that following CUS exposure, WT mice displayed reduced sucrose preference, impaired novel object recognition memory, and reduced neurogenesis, whereas CX3CR1-/- mice were completely resistant to these effects of CUS. CX3CR1-/- mice were also resilient to the memory-suppressive effect of a short period of unpredictable stress. Microglial somas were larger in CX3CR1-/- than in WT, but in both genotypes CUS induced a similar decline in hippocampal microglial density and processes length. RNA sequencing and pathway analysis revealed basal strain differences, particularly reduced expression of interferon (IFN)-regulated and MHC class I gene transcripts in CX3CR1-/- mice. Furthermore, while CUS exposure similarly altered neuronal gene transcripts (e.g. Arc, Npas4) in both strains, transcripts downstream of hippocampal estrogen receptor signaling (particularly Igf2 and Igfbp2) were altered only in CX3CR1-/- mice. These findings indicate that emotional and cognitive stress resilience involves CX3CR1-dependent basal and stress-induced alterations in hippocampal transcription, implicating inhibition of CX3CR1 signaling as a novel approach for promoting stress resilience.


Subject(s)
CX3C Chemokine Receptor 1/genetics , Hippocampus/metabolism , Microglia/metabolism , Stress, Psychological/metabolism , Transcriptome , Animals , CX3C Chemokine Receptor 1/metabolism , Male , Memory/physiology , Mice , Mice, Knockout , Neurogenesis/physiology , Neurons/metabolism , Resilience, Psychological , Signal Transduction , Stress, Psychological/genetics
11.
Trends Neurosci ; 38(10): 637-658, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26442697

ABSTRACT

Despite decades of intensive research, the biological mechanisms that causally underlie depression are still unclear, and therefore the development of novel effective antidepressant treatments is hindered. Recent studies indicate that impairment of the normal structure and function of microglia, caused by either intense inflammatory activation (e.g., following infections, trauma, stroke, short-term stress, autoimmune or neurodegenerative diseases) or by decline and senescence of these cells (e.g., during aging, Alzheimer's disease, or chronic unpredictable stress exposure), can lead to depression and associated impairments in neuroplasticity and neurogenesis. Accordingly, some forms of depression can be considered as a microglial disease (microgliopathy), which should be treated by a personalized medical approach using microglial inhibitors or stimulators depending on the microglial status of the depressed patient.


Subject(s)
Depressive Disorder/immunology , Microglia/immunology , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depressive Disorder/therapy , Electroconvulsive Therapy , Humans , Microglia/drug effects , Precision Medicine/methods
13.
Brain Behav Immun ; 41: 239-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24933434

ABSTRACT

Recent studies demonstrate that microglia play an important role in cognitive and neuroplasticity processes, at least partly via microglial CX3C receptor 1 (CX3CR1) signaling. Furthermore, microglia are responsive to environmental enrichment (EE), which modulates learning, memory and neurogenesis. In the present study we examined the role of microglial CX3CR1 signaling in hippocampal- and olfactory-bulb (OB)-related memory and neurogenesis in homozygous mice with microglia-specific transgenic expression of GFP under the CX3CR1 promoter (CX3CR1(-/-) mice), in which the CX3CR1 gene is functionally deleted, as well as heterozygous CX3CR1(+/-) and WT controls. We report that the CX3CR1-deficient mice displayed better hippocampal-dependent memory functioning and olfactory recognition, along with increased number and soma size of hippocampal microglia, suggestive of mild activation status, but no changes in OB microglia. A similar increase in hippocampal-dependent memory functioning and microglia number was also induced by pharmacological inhibition of CX3CR1 signaling, using chronic (2weeks) i.c.v. administration of CX3CR1 blocking antibody. In control mice, EE improved hippocampal-dependent memory and neurogenesis, and increased hippocampal microglia number and soma size, whereas odor enrichment (OE) improved olfactory recognition and OB neurogenesis without changing OB microglia status. In CX3CR1-deficient mice, EE and OE did not produce any further improvement in memory functioning or neurogenesis and had no effect on microglial status. These results support the notion that in the hippocampus microglia and their interactions with neurons via the CX3CR1 play an important role in memory functioning and neurogenesis, whereas in the OB microglia do not seem to be involved in these processes.


Subject(s)
Hippocampus/cytology , Memory/physiology , Microglia/physiology , Nerve Tissue Proteins/physiology , Neurogenesis/physiology , Olfactory Bulb/cytology , Receptors, Chemokine/physiology , Animals , CX3C Chemokine Receptor 1 , Environment , Genes, Reporter , Hippocampus/immunology , Hippocampus/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Odorants , Olfactory Bulb/immunology , Olfactory Bulb/physiology , Physical Stimulation , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/deficiency , Recognition, Psychology/physiology
14.
Curr Top Behav Neurosci ; 18: 1-12, 2014.
Article in English | MEDLINE | ID: mdl-24481547

ABSTRACT

Stress robustness by definition, incorporates both stress resistance (organisms endure greater stressor intensity or duration before suffering negative consequences) and stress resilience (organisms recover faster after suffering negative consequences). Factors that influence stress robustness include the nature of the stressor, (i.e., controllability, intensity, chronicity) and features of the organism (i.e., age, genetics, sex, and physical activity status). Here we present a novel hypothesis for how physically active versus sedentary living promotes stress robustness in the face of intense uncontrollable stress. Advances in neurobiology have established microglia as an active player in the regulation of synaptic activity, and recent work has revealed mechanisms for modulating glial function, including cross talk between neurons and glia. This chapter presents supporting evidence that the physical activity status of an organism may modulate stress-evoked neuronal-glial responses by changing the CX3CL1-CX3CR1 axis. Specifically, we propose that sedentary animals respond to an intense acute uncontrollable stressor with excessive serotonin (5-HT) and noradrenergic (NE) activity and/or prolonged down-regulation of the CX3CL1-CX3CR1 axis resulting in activation and proliferation of hippocampal microglia in the absence of pathogenic signals and consequent hippocampal-dependent memory deficits and reduced neurogenesis. In contrast, physically active animals respond to the same stressor with constrained 5-HT and NE activity and rapidly recovering CX3CL1-CX3CR1 axis responses resulting in the quieting of microglia, and protection from negative cognitive and neurobiological effects of stress.

15.
Neuropsychopharmacology ; 39(2): 401-14, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23954849

ABSTRACT

Ample evidence implicates neuroinflammatory processes in the etiology and progression of Alzheimer's disease (AD). To assess the specific role of the pro-inflammatory cytokine interleukin-1 (IL-1) in AD we examined the effects of intra-hippocampal transplantation of neural precursor cells (NPCs) with transgenic over-expression of IL-1 receptor antagonist (IL-1raTG) on memory functioning and neurogenesis in a murine model of AD (Tg2576 mice). WT NPCs- or sham-transplanted Tg2576 mice, as well as naive Tg2576 and WT mice served as controls. To assess the net effect of IL-1 blockade (not in the context of NPCs transplantation), we also examined the effects of chronic (4 weeks) intra-cerebroventricular (i.c.v.) administration of IL-1ra. We report that 12-month-old Tg2576 mice exhibited increased mRNA expression of hippocampal IL-1ß, along with severe disturbances in hippocampal-dependent contextual and spatial memory as well as in neurogenesis. Transplantation of IL-1raTG NPCs 1 month before the neurobehavioral testing completely rescued these disturbances and significantly increased the number of endogenous hippocampal cells expressing the plasticity-related molecule BDNF. Similar, but less-robust effects were also produced by transplantation of WT NPCs and by i.c.v. IL-1ra administration. NPCs transplantation produced alterations in hippocampal plaque formation and microglial status, which were not clearly correlated with the cognitive effects of this procedure. The results indicate that elevated levels of hippocampal IL-1 are causally related to some AD-associated memory disturbances, and provide the first example for the potential use of genetically manipulated NPCs with anti-inflammatory properties in the treatment of AD.


Subject(s)
Alzheimer Disease/metabolism , Disease Models, Animal , Hippocampus/metabolism , Interleukin 1 Receptor Antagonist Protein/biosynthesis , Memory/physiology , Neural Stem Cells/transplantation , Alzheimer Disease/surgery , Animals , Gene Expression Regulation , Hippocampus/surgery , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Neurogenesis/physiology , Neurons/physiology
16.
Proc Natl Acad Sci U S A ; 109(38): 15455-60, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22949675

ABSTRACT

Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level. Here we report skeletal immune-positive fibers for the PSNS marker vesicular ACh transporter (VAChT). Pseudorabies virus inoculated into the distal femoral metaphysis is identifiable in the sacral intermediolateral cell column and central autonomic nucleus, demonstrating PSNS femoral innervation originating in the spinal cord. The PSNS neurotransmitter ACh targets nicotinic (nAChRs), but not muscarinic receptors in bone cells, affecting mainly osteoclasts. nAChR agonists up-regulate osteoclast apoptosis and restrain bone resorption. Mice deficient of the α(2)nAChR subunit have increased bone resorption and low bone mass. Silencing of the IL-1 receptor signaling in the central nervous system by brain-specific overexpression of the human IL-1 receptor antagonist (hIL1ra(Ast)(+/+) mice) leads to very low skeletal VAChT expression and ACh levels. These mice also exhibit increased bone resorption and low bone mass. In WT but not in hIL1ra(Ast)(+/+) mice, the cholinergic ACh esterase inhibitor pyridostigmine increases ACh levels and bone mass apparently by inhibiting bone resorption. Taken together, these results identify a previously unexplored key central IL-1-parasympathetic-bone axis that antagonizes the skeletal sympathetic tone, thus potently favoring bone mass accrual.


Subject(s)
Bone and Bones/metabolism , Interleukin-1/metabolism , Parasympathetic Nervous System/physiology , Acetylcholine/metabolism , Animals , Apoptosis , Bone Density , Bone Resorption , Brain/metabolism , Cell Proliferation , Heart/physiology , Humans , Male , Mice , Mice, Transgenic , Models, Biological , Osteoblasts/metabolism , Osteoclasts/metabolism , Pyridostigmine Bromide/pharmacology , Signal Transduction
17.
Expert Opin Ther Targets ; 16(11): 1097-112, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22925041

ABSTRACT

INTRODUCTION: Depression is associated with inflammation, Th1 and Th17 responses, oxidative and nitrosative stress (O&NS), autoimmune responses against neoantigenic determinants, and neuroprogression (i.e., neurodegeneration, impaired plasticity and reduced neurogenesis). These pathways involve increased monocytic activation and interleukin-1 (IL-1) levels. AREAS COVERED: This review will highlight the putative role of IL-1 in depression and the potential use of IL-1 signaling blockade as a treatment of depression. Electronic databases, i.e., Scopus, PUBMED and Google Scholar were employed using keywords: depression, depressive-like, interleukin-1, and interleukin-1 receptor antagonist (IL-1RA). EXPERT OPINION: Ample studies show that depression is accompanied by increased levels of IL-1 and IL-1RA, which attenuates the pro-inflammatory activities of IL-1. In some, but not all studies, antidepressant treatment decreased IL-1ß levels. In translational models, IL-1ß administration elicits depressive-like behaviors, neuroinflammation and neuroprogression, whereas treatment with IL-1RA yields antidepressant-like effects and attenuates neuroprogression. Anakinra, an IL-1RA, targets not only IL-1 signaling, but also Th1, Th17, O&NS and neuroprogressive pathways and therefore may be advanced to clinical Phase-II trials in depression due to medical conditions associated with an elevated IL-1/IL-1RA ratio.


Subject(s)
Depression/metabolism , Interleukin-1/metabolism , Animals , Antidepressive Agents/therapeutic use , Depression/drug therapy , Humans , Inflammation/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism
18.
Proc Natl Acad Sci U S A ; 108(12): 5081-6, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21385942

ABSTRACT

Neurons, astrocytes, and blood vessels are organized in functional "neurovascular units" in which the vasculature can impact neuronal activity and, in turn, dynamically adjust to its change. Here we explored different mechanisms by which VEGF, a pleiotropic factor known to possess multiple activities vis-à-vis blood vessels and neurons, may affect adult neurogenesis and cognition. Conditional transgenic systems were used to reversibly overexpress VEGF or block endogenous VEGF in the hippocampus of adult mice. Importantly, this was done in settings that allowed the uncoupling of VEGF-promoted angiogenesis, neurogenesis, and memory. VEGF overexpression was found to augment all three processes, whereas VEGF blockade impaired memory without reducing hippocampal perfusion or neurogenesis. Pertinent to the general debate regarding the relative contribution of adult neurogenesis to memory, we found that memory gain by VEGF overexpression and memory impairment by VEGF blockade were already evident at early time points at which newly added neurons could not yet have become functional. Surprisingly, VEGF induction markedly increased in vivo long-term potentiation (LTP) responses in the dentate gyrus, and VEGF blockade completely abrogated LTP. Switching off ectopic VEGF production resulted in a return to a normal memory and LTP, indicating that ongoing VEGF is required to maintain increased plasticity. In summary, the study not only uncovered a surprising role for VEGF in neuronal plasticity, but also suggests that improved memory by VEGF is primarily a result of increasing plasticity of mature neurons rather than the contribution of newly added hippocampal neurons.


Subject(s)
Cognition/physiology , Dentate Gyrus/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Memory/physiology , Mice , Mice, Transgenic , Neurogenesis/physiology , Vascular Endothelial Growth Factor A/genetics
19.
Eur J Pain ; 15(3): 242-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20801063

ABSTRACT

Neuropathic pain is a chronic pain state resulting from peripheral nerve injury, characterized by hyperalgesia and allodynia. We have reported that mice with genetic impairment of IL-1 signaling display attenuated neuropathic pain behavior and ectopic neuronal activity. In order to substantiate the role of IL-1 in neuropathic pain, WT mice were implanted subcutaneously with osmotic micropumps containing either IL-1ra or vehicle. Two days following the implantation, two models of neuropathic pain were used; partial nerve injury (spinal nerve transection, SNT), or complete nerve cut (spinal neuroma model). Mechanosensitivity was assessed seven consecutive days following SNT, and on day 7 recordings of spontaneous ectopic activity were performed. In the spinal nerve neuroma model, autotomy scores were recorded up to 35 days. Vehicle-treated mice developed significant allodynia and autotomy, and clear ectopic activity (4.1±1.1% of the axons); whereas IL-1ra-treated mice did not display allodynic response, displayed delayed onset of autotomy and markedly reduced severity of autotomy scores, and displayed reduced spontaneous activity (0.8±0.4% of the axons). To test whether IL-1 is involved in maintenance of mechanical allodynia, a separate group of WT mice was treated with a single injection of either saline or IL-1ra four days following SNT, after the allodynic response was already manifested. Whereas saline-treated mice displayed robust allodynia, acute IL-1ra treatment induced long-lasting attenuation of the allodynic response. The results support our hypothesis that IL-1 signaling plays an important role in neuropathic pain and in the ectopic neuronal activity that underling its development.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/therapeutic use , Neuralgia/drug therapy , Neurons/drug effects , Pain Threshold/drug effects , Receptors, Interleukin-1/antagonists & inhibitors , Spinal Nerves/injuries , Analysis of Variance , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Electrophysiology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1/genetics , Male , Mice , Mice, Transgenic , Neuralgia/genetics , Neuralgia/physiopathology , Neurons/physiology , Pain Measurement/drug effects , Pain Threshold/physiology , Physical Stimulation , Receptors, Interleukin-1/genetics , Spinal Nerves/physiopathology
20.
Brain Behav Immun ; 25(2): 181-213, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20970492

ABSTRACT

Over the past two decades it became evident that the immune system plays a central role in modulating learning, memory and neural plasticity. Under normal quiescent conditions, immune mechanisms are activated by environmental/psychological stimuli and positively regulate the remodeling of neural circuits, promoting memory consolidation, hippocampal long-term potentiation (LTP) and neurogenesis. These beneficial effects of the immune system are mediated by complex interactions among brain cells with immune functions (particularly microglia and astrocytes), peripheral immune cells (particularly T cells and macrophages), neurons, and neural precursor cells. These interactions involve the responsiveness of non-neuronal cells to classical neurotransmitters (e.g., glutamate and monoamines) and hormones (e.g., glucocorticoids), as well as the secretion and responsiveness of neurons and glia to low levels of inflammatory cytokines, such as interleukin (IL)-1, IL-6, and TNFα, as well as other mediators, such as prostaglandins and neurotrophins. In conditions under which the immune system is strongly activated by infection or injury, as well as by severe or chronic stressful conditions, glia and other brain immune cells change their morphology and functioning and secrete high levels of pro-inflammatory cytokines and prostaglandins. The production of these inflammatory mediators disrupts the delicate balance needed for the neurophysiological actions of immune processes and produces direct detrimental effects on memory, neural plasticity and neurogenesis. These effects are mediated by inflammation-induced neuronal hyper-excitability and adrenocortical stimulation, followed by reduced production of neurotrophins and other plasticity-related molecules, facilitating many forms of neuropathology associated with normal aging as well as neurodegenerative and neuropsychiatric diseases.


Subject(s)
Immunomodulation/physiology , Learning/physiology , Memory/physiology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Animals , Behavior/physiology , Behavior, Animal/physiology , Cytokines/physiology , Humans , Immunity, Cellular , Prostaglandins/physiology , T-Lymphocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL