Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38897938

ABSTRACT

NF2-related schwannomatosis (NF2; previously termed neurofibromatosis type 2) is a tumor-prone disorder characterized by development of multiple schwannomas and meningiomas. The diagnostic criteria of NF2 have been regularly revised. Clinical criteria for NF2 were first formulated at the National Institutes of Health Consensus Conference in 1987 and revised in 1990. Revised criteria were also proposed by the Manchester group in 1992 and by the National Neurofibromatosis Foundation (NNFF) in 1997. The 2011 Baser criteria improved the sensitivity of diagnostic criteria, particularly for patients without bilateral vestibular schwannomas. Revisions to the Manchester criteria were published in 2019, with replacement of "glioma" by "ependymoma," removal of "neurofibroma," addition of an age limit of 70 years for development of vestibular schwannomas, and introduction of molecular criteria, which led to the most widely used criteria. In 2022, the criteria were reviewed and updated by the international committee of NF experts. In addition to changes in diagnostic criteria, the committee recommended the use of "schwannomatosis" as an umbrella term for conditions that predispose to schwannomas. Each type of schwannomatosis was classified by the gene containing the disease-causing pathogenic variant. Molecular data from NF2 patients led to further clarification of the diagnostic criteria for NF2 mosaic phenotypes. Given all these changes, the diagnostic criteria of NF2 may be confusing. Herein, to help healthcare professionals who diagnose NF2 conditions in the clinical setting, we review the historical development of diagnostic criteria.

2.
Case Rep Oncol ; 17(1): 113-121, 2024.
Article in English | MEDLINE | ID: mdl-38260034

ABSTRACT

Introduction: Glioblastomas can manifest as multiple, simultaneous, noncontiguous lesions. We genetically analyzed multiple glioblastomas and discuss their etiological origins in this report. Case Presentation: We present the case of a 47-year-old woman who presented with memory impairment and left partial paralysis. Radiographic imaging revealed three apparently noncontiguous lesions in the right temporal and parietal lobes extending into the corpus callosum, leading to diagnosis of multicentric glioblastomas. All three lesions were excised. Genetic analysis of the lesions revealed a TERT promoter C228T mutation, a roughly equivalent amplification of EGFR, and homozygous deletion of CDKN2A/B exclusively in the two contrast-enhanced lesions. Additionally, the contrast-enhanced lesions exhibited the same two-base pair mutations of PTEN, whereas the non-enhanced lesion showed a partially distinct 13-base pair mutation. The other genetic characteristics were consistent. Rather than each having arisen de novo, we believe that they had developed by infiltration and are therefore best classified as multifocal glioblastomas. Conclusion: Our findings underscore anew the possibility of infiltration by glioblastomas, even within regions devoid of signal alterations on T2-weighted images or fluid-attenuated inversion recovery images. Genetic analysis can play a crucial role in differentiating whether multiple glioblastomas are multifocal or multicentric.

3.
Bioeng Transl Med ; 8(5): e10406, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693056

ABSTRACT

Glioblastoma is characterized by diffuse infiltration into the normal brain. Invasive glioma stem cells (GSCs) are an underlying cause of treatment failure. Despite the use of multimodal therapies, the prognosis remains dismal. New therapeutic approach targeting invasive GSCs is required. Here, we show that neural stem cells (NSCs) derived from CRISRP/Cas9-edited human-induced pluripotent stem cell (hiPSC) expressing a suicide gene had higher tumor-trophic migratory capacity compared with mesenchymal stem cells (MSCs), leading to marked in vivo antitumor effects. High migratory capacity in iPSC-NSCs was related to self-repulsive action and pathotropism involved in EphB-ephrinB and CXCL12-CXCR4 signaling. The gene insertion to ACTB provided higher and stable transgene expression than other common insertion sites, such as GAPDH or AAVS1. Ferroptosis was associated with enhanced antitumor immune responses. The thymidylate synthase and dihydroprimidine dehydrogenase expressions predicted the treatment efficacy of therapeutic hiPSC-NSCs. Our results indicate the potential benefit of genome-edited iPS cells based gene therapy for invasive GSCs. Furthermore, the present research concept may become a platform to promote clinical studies using hiPSC.

4.
Stem Cells ; 41(6): 603-616, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37029780

ABSTRACT

Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis.


Subject(s)
Brain Injuries, Traumatic , Induced Pluripotent Stem Cells , Neural Stem Cells , Neuroprotective Agents , Mice , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Neuroprotective Agents/metabolism , Neural Stem Cells/metabolism , Neurons , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/therapy
5.
Front Oncol ; 13: 1340167, 2023.
Article in English | MEDLINE | ID: mdl-38282673

ABSTRACT

Recently, there has been growing interest in the presence and function of meningeal lymphatic vessels, with no direct evidence linking these vessels to primary brain tumors. We report a unique case of recurrent ependymoma in the dura mater, showing histopathological signs of lymphatic proliferation at the tumor attachment site. The patient initially presented with a headache, and was diagnosed with ZFTA fusion-positive supratentorial ependymoma, central nervous system WHO Grade 3. Following multiple dura mater recurrences and surgery, the fifth procedure revealed numerous tumors contralateral to the original site, with genetic testing confirming ZFTA fusion positivity, indicating recurrent ependymoma. Immunohistochemical analysis showed D2-40+ lymphatic vessel proliferation around tumor attachment sites within the dura mater. Elevated expression of ZEB1, which is an epithelial-to-mesenchymal transition factor, was also observed, implicating potential involvement in the unique pathophysiology. The present case suggests a new process of metastasis through meningeal lymphatic vessels, although we were unable to visually confirm tumor cell infiltration into the lymphatic vessels. This case is the first report suggesting ependymoma metastasis through dural lymphatic vessels, underlining the need for further case accumulation and study to understand the mechanisms of this phenomenon.

6.
Mol Cell ; 68(3): 626-640.e5, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29107535

ABSTRACT

Eukaryotic cells spend most of their life in interphase of the cell cycle. Understanding the rich diversity of metabolic and genomic regulation that occurs in interphase requires the demarcation of precise phase boundaries in situ. Here, we report the properties of two genetically encoded fluorescence sensors, Fucci(CA) and Fucci(SCA), which enable real-time monitoring of interphase and cell-cycle biology. We re-engineered the Cdt1-based sensor from the original Fucci system to respond to S phase-specific CUL4Ddb1-mediated ubiquitylation alone or in combination with SCFSkp2-mediated ubiquitylation. In cultured cells, Fucci(CA) produced a sharp triple color-distinct separation of G1, S, and G2, while Fucci(SCA) permitted a two-color readout of G1 and S/G2. Fucci(CA) applications included tracking the transient G1 phase of rapidly dividing mouse embryonic stem cells and identifying a window for UV-irradiation damage in S phase. These results show that Fucci(CA) is an essential tool for quantitative studies of interphase cell-cycle regulation.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cullin Proteins/metabolism , Embryonic Stem Cells/physiology , Fluorescent Dyes/metabolism , Luminescent Proteins/metabolism , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Cullin Proteins/genetics , Embryonic Stem Cells/cytology , Genes, Reporter , HeLa Cells , Humans , Luminescent Proteins/genetics , Mice
7.
Biochem Biophys Res Commun ; 457(1): 7-11, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25534850

ABSTRACT

Fluorescent ubiquitination-based cell cycle indicator (Fucci) technology utilizing the cell cycle-dependent proteolysis of ubiquitin oscillators enables visualization of cell cycle progression in living cells. The Fucci probe consists of two chimeric fluorescent proteins, FucciS/G2/M and FucciG1, which label the nuclei of cells in S/G2/M phase green and those in G1 phase red, respectively. In this study, we generated Fucci transgenic mice and analyzed transgene expression in hematopoietic cells using flow cytometry. The FucciS/G2/M-#474 and FucciG1-#639 mouse lines exhibited high-level transgene expression in most hematopoietic cell populations. The FucciG1-#610 line expressed the transgene at high levels predominantly in the hematopoietic stem cell (HSC) population. Analysis of the HSC (CD34(-)KSL: CD34(-/low)c-Kit(+)Sca-1(+)lineage marker(-)) population in the transgenic mice expressing both FucciS/G2/M and FucciG1 (#474/#610) confirmed that more than 95% of the cells were in G0/G1 phase, although the FucciG1(red) intensity was heterogeneous. An in vivo competitive repopulation assay revealed that repopulating activity resided largely in the FucciG1(red)(high) fraction of CD34(-)KSL cells. Thus, the CD34(-)KSL HSC population can be further purified on the basis of the Fucci intensity.


Subject(s)
Cell Cycle , Cell Separation/methods , Fluorescent Dyes/metabolism , Hematopoietic Stem Cells/cytology , Ubiquitination , Animals , Flow Cytometry , Fluorescence , Hematopoietic Stem Cells/metabolism , Mice, Transgenic , Transgenes
8.
Development ; 140(22): 4624-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24154524

ABSTRACT

The majority of mammalian somatic cells maintain a diploid genome. However, some mammalian cell types undergo multiple rounds of genome replication (endoreplication) as part of normal development and differentiation. For example, trophoblast giant cells (TGCs) in the placenta become polyploid through endoreduplication (bypassed mitosis), and megakaryocytes (MKCs) in the bone marrow become polyploid through endomitosis (abortive mitosis). During the normal mitotic cell cycle, geminin and Cdt1 are involved in 'licensing' of replication origins, which ensures that replication occurs only once in a cell cycle. Their protein accumulation is directly regulated by two E3 ubiquitin ligase activities, APC(Cdh1) and SCF(Skp2), which oscillate reciprocally during the cell cycle. Although proteolysis-mediated, oscillatory accumulation of proteins has been documented in endoreplicating Drosophila cells, it is not known whether the ubiquitin oscillators that control normal cell cycle transitions also function during mammalian endoreplication. In this study, we used transgenic mice expressing Fucci fluorescent cell-cycle probes that report the activity of APC(Cdh1) and SCF(Skp2). By performing long-term, high temporal-resolution Fucci imaging, we were able to visualize reciprocal activation of APC(Cdh1) and SCF(Skp2) in differentiating TGCs and MKCs grown in our custom-designed culture wells. We found that TGCs and MKCs both skip cytokinesis, but in different ways, and that the reciprocal activation of the ubiquitin oscillators in MKCs varies with the polyploidy level. We also obtained three-dimensional reconstructions of highly polyploid TGCs in whole, fixed mouse placentas. Thus, the Fucci technique is able to reveal the spatiotemporal regulation of the endoreplicative cell cycle during differentiation.


Subject(s)
Endoreduplication , Mammals/embryology , Ubiquitin/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Mice, Transgenic , Mitosis , Molecular Imaging , Placenta/cytology , Placenta/metabolism , Pregnancy , Reproducibility of Results , Trophoblasts/cytology , Trophoblasts/metabolism
9.
Biol Reprod ; 89(2): 24, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23803554

ABSTRACT

Somatic cell nuclear transfer (SCNT) is a unique technology that produces cloned animals from single cells. It is desirable from a practical viewpoint that donor cells can be collected noninvasively and used readily for nuclear transfer. The present study was undertaken to determine whether peripheral blood cells freshly collected from living mice could be used for SCNT. We collected a drop of peripheral blood (15-45 µl) from the tail of a donor. A nucleated cell (leukocyte) suspension was prepared by lysing the red blood cells. Following SCNT using randomly selected leukocyte nuclei, cloned offspring were born at a 2.8% birth rate. Fluorescence-activated cell sorting revealed that granulocytes/monocytes and lymphocytes could be roughly distinguished by their sizes, the former being significantly larger. We then cloned putative granulocytes/monocytes and lymphocytes separately and obtained 2.1% and 1.7% birth rates, respectively (P > 0.05). Because the use of lymphocyte nuclei inevitably results in the birth of offspring with DNA rearrangements, we applied granulocyte/monocyte cloning to two genetically modified strains and two recombinant inbred strains. Normal-looking offspring were obtained from all four strains tested. The present study clearly indicated that genetic copies of mice could be produced using a drop of peripheral blood from living donors. This strategy will be applied to the rescue of infertile founder animals or a "last-of-line" animal possessing invaluable genetic resources.


Subject(s)
Cloning, Organism/methods , Embryo, Mammalian/cytology , Nuclear Transfer Techniques , Animals , Embryo Transfer , Fibroblasts/cytology , Flow Cytometry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...