Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Mil Med ; 189(Supplement_3): 710-718, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160815

ABSTRACT

INTRODUCTION: Cervical spondylosis in the warfighter is a common musculoskeletal problem and can be career-ending especially if it requires fusion. Head-mounted equipment and increased biomechanical forces on the cervical spine have resulted in accelerated cervical spine degeneration. Current surgical gold standard is anterior cervical discectomy and fusion (ACDF). Posterior cervical foraminotomy (PCF) is a nonfusion surgical alternative, and this can be effective in alleviating radiculopathy from foraminal stenosis caused by disc-osteophyte complex. Biomechanical studies have not been done to analyze motion associated with military aircrew personnel following PCF. The aim of this study was to compare the biomechanical responses of the effects of ACDF and PCF with different grades of facet resection under simulated military aircrew conditions using range of motion, disc pressure, and facet loads at the index and adjacent levels. MATERIALS AND METHODS: A validated 3D finite element model of the human cervical spinal column was used to simulate various graded PCF and ACDF. All surgical simulations were performed at the most commonly operated level (C5-C6) in warfighters. Pure moment loading under flexion, extension, and lateral bending, and in vivo follower force of 75 N were applied to the intact spine. Hybrid loading protocol was used to achieve 134 degrees of combined flexion-extension and 83 degrees of lateral bending in intact and surgical models to reflect military loading conditions. Segmental motions, disc pressure, and facet load were obtained and normalized with respect to the intact model to quantify the biomechanical effect. RESULTS: Anterior cervical discectomy and fusion decreased range of motion at the index and increased motion at the adjacent levels, while all graded PCF responses had an opposite trend: increased motion at the index and decreased motion at adjacent levels. The magnitude of changes depended on the level of resection, spinal level, and loading mode. Disc pressure increased at the index level and decreased at the adjacent levels after PCF. These changes were exaggerated with increasing extent of facet resection. Facet load increased at the index level after PCF especially with extension and right (contralateral) lateral bending. Complete facetectomy led to facet load increases greater than ACDF at the adjacent levels in both flexion and extension. CONCLUSIONS: Posterior cervical foraminotomy is a motion-preserving implant-free surgical alternative to ACDF for warfighters with cervical radiculopathy after failure of conservative management. The treating surgeon must pay close attention to the extent of facet resection to avoid potential spinal instability and future disc and facet degeneration after PCF. Posterior cervical foraminotomy can be more advantageous than ACDF in terms of adjacent segment degeneration, motion preservation, reoperation rate, surgical cost, and retention of warfighters.


Subject(s)
Cervical Vertebrae , Foraminotomy , Military Personnel , Range of Motion, Articular , Spinal Fusion , Humans , Cervical Vertebrae/surgery , Biomechanical Phenomena/physiology , Foraminotomy/methods , Foraminotomy/instrumentation , Spinal Fusion/methods , Range of Motion, Articular/physiology , Military Personnel/statistics & numerical data , Finite Element Analysis , Diskectomy/methods
2.
Mil Med ; 189(Supplement_3): 55-62, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160828

ABSTRACT

INTRODUCTION: Clinical investigations have attributed lumbar spine injuries in combat to the vertical vector. Injury prevention strategies include the determination of spine biomechanics under this vector and developing/evaluating physical devices for use in live fire and evaluation-type tests to enhance Warfighter safety. While biological models have replicated theater injuries in the laboratory, matched-pair tests with physical devices are needed for standardized tests. The objective of this investigation is to determine the responses of the widely used Hybrid III lumbar spine under the vertical impact-loading vector. MATERIALS AND METHODS: Our custom vertical accelerator device was used in the study. The manikin spinal column was mounted between the inferior and superior six-axis load cells, and the impact was delivered to the inferior end. The first group of tests consisted of matched-pair repeatability tests, second group consisted of adding matched-pair tests to this first group to determine the response characteristics, and the third group consisted of repeating the earlier two groups by changing the effective torso mass from 12 to 16 kg. Peak axial, shear, and resultant forces at the two ends of the spine were obtained. RESULTS: The first group of 12 repeatability tests showed that the mean difference in the axial force between two tests at the same velocity across the entire range of inputs was <3% at both ends. In the second group, at the inferior end, the axial and shear forces ranged from 4.9-25.2 kN to 0.7-3.0 kN. Shear forces accounted for a mean of 11 ± 6% and 12 ± 4% of axial forces at the two ends. In the third group of tests with increased torso mass, repeatability tests showed that the mean difference in the axial force between the two tests at the same velocity across the entire range of inputs was <2% at both ends. At the inferior end, the axial and shear forces ranged from 5.7-28.7 kN to 0.6-3.4 kN. Shear forces accounted for a mean of 11 ± 8% and 9 ± 3% of axial forces across all tests at the inferior and superior ends. Other data including plots of axial and shear forces at the superior and inferior ends across tested velocities of the spine are given in the paper. CONCLUSIONS: The Hybrid III lumbar spine when subjected to vertical impact simulating underbody blast levels showed that the impact is transmitted via the axial loading mechanism. This finding paralleled the results of axial force predominance over shear forces and axial loading injuries to human spines. Axial forces increased with increasing velocity suggesting the possibility of developing injury assessment risk curves, i.e., the manikin spine does not saturate, and its response is not a step function. It is possible to associate probability values for different force magnitudes. A similar conclusion was found to be true for both magnitudes of added effective torso mass at the superior end of the manikin spinal column. Additional matched-pair tests are needed to develop injury criteria for the Hybrid III male and female lumbar spines.


Subject(s)
Lumbar Vertebrae , Manikins , Humans , Lumbar Vertebrae/physiology , Biomechanical Phenomena/physiology , Weight-Bearing/physiology
3.
Mil Med ; 189(Supplement_3): 659-664, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160873

ABSTRACT

INTRODUCTION: While the 44-mm clay penetration criterion was developed in the 1970s for soft body armor applications, and the researchers acknowledged the need to conduct additional tests, the same behind the armor blunt trauma displacement limit is used for both soft and hard body armor evaluations and design considerations. Because the human thoraco-abdominal contents are heterogeneous, have different skeletal coverage, and have different functional requirements, the same level of penetration limit does not imply the same level of protection. It is important to determine the regional responses of different thoraco-abdominal organs to better describe human tolerance and improve the current behind armor blunt trauma standard. The purpose of this study was to report on the methods, procedures, and data collected from swine. MATERIALS AND METHODS: Live swine tests were conducted after obtaining approvals from the local institution and the Army Care and Use Review Office of the U.S. Department of Defense. Trachea tubes and an intravenous line were introduced before administering anesthesia. Pressure transducers were inserted into the lungs and aorta. An indenter simulating the backface deformation profiles produced by body armor from military-relevant ballistics to human cadavers was used to deliver impact loading to the liver region. A triaxial accelerometer was included in the indenter design. The animals were monitored for 6 hours, necropsies were performed, and injuries were identified. Biomechanical data of the energy, velocity, deflection, viscous criterion, force, and impulse variables were obtained for each test. RESULTS: Peak accelerations, velocities, deflections, forces, impulse, and energies ranged from 897 to 5,808 g, 21 to 59 m/s, 1.96 to 8.87 cm, 2.3 to 13.1 kN, 1.1 to 7.1 Ns, and 58 to 387 J, respectively. The peak viscous criterion ranged from 0.8 to 5.8 m/s. All animals survived the 6-hour survival period. Three animals responded with liver lacerations while the remaining 4 did not have any injuries. CONCLUSION: The experimental design based on parallel tests with whole body human cadavers and cadaver swine was found to be successful in delivering controlled impacts to the liver region of live swine and reproducing liver injuries. Previously used biomechanical measures as potential candidates for injury criteria development were obtained. Using this proven model, tests with additional samples are needed to develop injury risk curves for liver impacts and obtain regional (liver) injury criteria.


Subject(s)
Liver , Wounds, Nonpenetrating , Animals , Swine , Wounds, Nonpenetrating/physiopathology , Liver/injuries , Models, Animal , Disease Models, Animal , Humans
4.
Diagnostics (Basel) ; 14(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39061634

ABSTRACT

Cervical laminoplasty is an established motion-preserving procedure for degenerative cervical myelopathy (DCM). However, patients with pre-existing cervical kyphosis often experience inferior outcomes compared to those with straight or lordotic spines. Limited dorsal spinal cord shift in kyphotic spines post-decompression and increased spinal cord tension may contribute to poor neurological recovery and spinal cord injury. This study aims to quantify the biomechanical impact of cervical sagittal alignment on spinal cord stress and strain post-laminoplasty using a validated 3D finite element model of the C2-T1 spine. Three models were created based on the C2-C7 Cobb angle: lordosis (20 degrees), straight (0 degrees), and kyphosis (-9 degrees). Open-door laminoplasty was simulated at C4, C5, and C6 levels, followed by physiological neck flexion and extension. The results showed that spinal cord stress and strain were highest in kyphotic curvature compared to straight and lordotic curvatures across all cervical segments, despite similar segmental ROM. In flexion, kyphotic spines exhibited 103.3% higher stress and 128.9% higher strain than lordotic spines and 16.7% higher stress and 26.8% higher strain than straight spines. In extension, kyphotic spines showed 135.4% higher stress and 241.7% higher strain than lordotic spines and 21.5% higher stress and 43.2% higher strain than straight spines. The study shows that cervical kyphosis leads to increased spinal cord stress and strain post-laminoplasty, underscoring the need to address sagittal alignment in addition to decompression for optimal patient outcomes.

5.
Article in English | MEDLINE | ID: mdl-39003653

ABSTRACT

Spinal cord stress and strain contribute to degenerative cervical myelopathy (DCM), while cervical kyphosis is known to negatively impact surgical outcomes. In DCM, the relationship between spinal cord biomechanics, sagittal alignment, and cord compression is not well understood. Quantifying this relationship can guide surgical strategies. A previously validated three-dimensional finite element model of the human cervical spine with spinal cord was used. Three models of cervical alignment were created: lordosis (C2-C7 Cobb angle: 20°), straight (0°), and kyphosis (- 9°). C5-C6 spinal stenosis was simulated with ventral disk protrusions, reducing spinal canal diameters to 10 mm, 8 mm, and 6 mm. Spinal cord pre-stress and pre-strain due to alignment and compression were quantified. Cervical flexion and extension were simulated with a pure moment load of 2 Nm. The Von Mises stress and maximum principal strain of the whole spinal cord were calculated during neck motion and the relationship between spinal cord biomechanics, alignment, and compression was analyzed using linear regression analysis. Spinal cord pre-stress and pre-strain were greatest with kyphosis (7.53 kPa, 5.4%). Progressive kyphosis and stenosis were associated with an increase in spinal cord stress (R2 = 0.99) and strain (R2 = 0.99). Cervical kyphosis was associated with greater spinal cord stress and strain during neck flexion-extension and the magnitude of difference increased with increasing stenosis. Cervical kyphosis increases baseline spinal cord stress and strain. Incorporating sagittal alignment with compression to calculate spinal cord biomechanics is necessary to accurately quantify spinal stress and strain during neck flexion and extension.

6.
J Biomech Eng ; 146(11)2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38884993

ABSTRACT

Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.


Subject(s)
Imaging, Three-Dimensional , Biomechanical Phenomena , Wounds, Nonpenetrating/diagnostic imaging , Wounds, Nonpenetrating/physiopathology , Mechanical Phenomena , Humans
7.
Trauma Surg Acute Care Open ; 9(1): e001194, 2024.
Article in English | MEDLINE | ID: mdl-38860115

ABSTRACT

Background: The current behind armor blunt trauma (BABT) injury criterion uses a single penetration limit of 44 mm in Roma Plastilina clay and is not specific to thoracoabdominal regions. However, different regions in the human body have different injury tolerances. This manuscript presents a matched-pair hybrid test paradigm with different experimental models and candidate metrics to develop regional human injury criteria. Methods: Live and cadaver swine were used as matched pair experimental models. An impactor simulating backface deformation profiles produced by body armor from military-relevant ballistics was used to deliver BABT loading to liver and lung regions in cadaver and live swine. Impact loading was characterized using peak accelerations and energy. For live swine, physiological parameters were monitored for 6 hours, animals were euthanized, and a detailed necropsy was done to identify injuries to skeletal structures, organs and soft tissues. A similar process was used to identify injuries to the cadaver swine for targeted thoracoabdominal regions. Results: Two cadavers and one live swine were subjected to BABT impacts to the liver. One cadaver and one live swine were subjected to BABT impacts to the left lung. Injuries to both regions were similar at similar energies between the cadaver and live models. Conclusions: Swine is an established animal for thoracoabdominal impact studies in automotive standards, although at lower insult levels. Similarities in BABT responses between cadaver and live swine allow for extending testing protocols to human cadavers and for the development of scaling relationships between animal and human cadavers, acting as a hybrid protocol between species and live and cadaver models. Injury tolerances and injury risk curves from live animals can be converted to human tolerances via structural scaling using these outcomes. The present experimental paradigm can be used to develop region-based BABT injury criteria, which are not currently available.

8.
Mil Med ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877895

ABSTRACT

INTRODUCTION: Warfighters are issued hard body armor designed to defeat ballistic projectiles. The resulting backface deformation can injure different thoracoabdominal organs. Developed over decades ago, the behind armor blunt impact criterion of maximum 44 mm depth in clay continues to be used independent of armor type or impact location on the thoracoabdominal region covered by the armor. Because thoracoabdominal components have different energy absorption capabilities, their mode of failures and mechanical properties are different. These considerations underscore the lack of effectiveness of using the single standard to cover all thoracoabdominal components to represent the same level of injury risk. The objective of this pilot study is to conduct cardiac impact tests with a live animal model and analyze biomechanical injury candidate metrics for behind armor blunt trauma applications. MATERIALS AND METHODS: Live swine tests were conducted after obtaining approvals from the U.S. DoD. Trachea tubes. An intravenous line were introduced into the swine before administering anesthesia. Pressure transducers were inserted into lungs and aorta. An indenter simulating backface deformation profiles produced by body armor from military-relevant ballistics to human cadavers delivered impact to the heart region. The approved test protocol included 6-hour monitoring and necropsies. Indenter accelerometer signals were processed to compute the velocity and deflection, and their peak magnitudes were obtained. The deflection-time signal was normalized with respect to chest depth along the impact axis. The peak magnitude of the viscous criterion, kinetic energy, force, momentum and stiffness were obtained. RESULTS: Out of the 8 specimens, 2 were sham controls. The mean total body mass and soft tissue thickness at the impact site were 81.1 ± 4.1 kg and 3.8 ± 1.1 cm. The peak velocities ranged from 30 to 59 m/s, normalized deflections ranged from 15 to 21%, and energies ranged from 105 to 407 J. The range in momentum and stiffness were 7.0 to 13.9 kg-m/s and 22.3 to 79.9 N/m. The maximum forces and impulse data ranged from 2.9 to 11.7 kN and 1.9 to 5.8 N-s. The peak viscous criterion ranged from 2.0 to 5.3 m/s. One animal did not sustain any injuries, 2 had cardiac injuries, and others had lung and skeletal injuries. CONCLUSIONS: The present study applied blunt impact loads to the live swine cardiac region and determined potential candidate injury metrics for characterization. The sample size of 6 swine produced injuries ranging from none to pure skeletal to pure organ trauma. The viscous criterion metric associated with the response of the animal demonstrated a differing pattern than other variables with increasing velocity. These findings demonstrate that our live animal experimental design can be effectively used with testing additional samples to develop behind armor blunt injury criteria for cardiac trauma in the form of risk curves. Injury criteria obtained for cardiac trauma can be used to enhance the effectiveness of the body armor, reduce morbidity and mortality, and improve warfighter readiness in combat operations.

9.
Ann Biomed Eng ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922366

ABSTRACT

Evaluating Behind Armor Blunt Trauma (BABT) is a critical step in preventing non-penetrating injuries in military personnel, which can result from the transfer of kinetic energy from projectiles impacting body armor. While the current NIJ Standard-0101.06 standard focuses on preventing excessive armor backface deformation, this standard does not account for the variability in impact location, thorax organ and tissue material properties, and injury thresholds in order to assess potential injury. To address this gap, Finite Element (FE) human body models (HBMs) have been employed to investigate variability in BABT impact conditions by recreating specific cases from survivor databases and generating injury risk curves. However, these deterministic analyses predominantly use models representing the 50th percentile male and do not investigate the uncertainty and variability inherent within the system, thus limiting the generalizability of investigating injury risk over a diverse military population. The DoD-funded I-PREDICT Future Naval Capability (FNC) introduces a probabilistic HBM, which considers uncertainty and variability in tissue material and failure properties, anthropometry, and external loading conditions. This study utilizes the I-PREDICT HBM for BABT simulations for three thoracic impact locations-liver, heart, and lower abdomen. A probabilistic analysis of tissue-level strains resulting from a BABT event is used to determine the probability of achieving a Military Combat Incapacitation Scale (MCIS) for organ-level injuries and the New Injury Severity Score (NISS) is employed for whole-body injury risk evaluations. Organ-level MCIS metrics show that impact at the heart can cause severe injuries to the heart and spleen, whereas impact to the liver can cause rib fractures and major lacerations in the liver. Impact at the lower abdomen can cause lacerations in the spleen. Simulation results indicate that, under current protection standards, the whole-body risk of injury varies between 6 and 98% based on impact location, with the impact at the heart being the most severe, followed by impact at the liver and the lower abdomen. These results suggest that the current body armor protection standards might result in severe injuries in specific locations, but no injuries in others.

10.
J Neurosurg Spine ; 41(2): 209-215, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788233

ABSTRACT

OBJECTIVE: Expandable transforaminal lumbar interbody fusion (TLIF) cages were designed to address the limitations of static cages. Bilateral cage insertion can potentially enhance stability, fusion rates, and segmental lordosis. However, the benefits of unilateral versus bilateral expandable cages with varying sizes in TLIF remain unclear. This study used a validated finite element spine model to compare the biomechanical properties of L5-S1 TLIF by using differently sized expandable cages inserted unilaterally or bilaterally. METHODS: A finite element model of X-PAC expandable lumbar cages was created and used at the L5-S1 level. This model had cage dimensions of 9 mm in height, 15° in lordosis, and varying widths and lengths. Various placements (unilateral vs bilateral) and sizes were examined under pure moment loading to evaluate range of motion, adjacent-segment motion, and endplate stress. RESULTS: Stability at the L5-S1 level decreased when smaller cages were used in both the unilateral and bilateral cage models. In the unilateral model, cage 1 (the smallest cage) resulted in 47.9% more motion at the L5-S1 level compared to cage 5 (the largest cage) in flexion, as well as 64.8% more motion in extension. Similarly, in the bilateral TLIF model, bilateral cage 1 led to 49.4% more motion at the L5-S1 level in flexion and 73.4% more motion in extension compared to bilateral cage 5. Unilateral insertion of cage 5 provided superior stability in flexion and surpassed cages 1-3 in extension when compared to cages inserted either unilaterally or bilaterally. Reduced motion at L5-S1 correlated with increased adjacent-segment motion at L4-5. Bilateral TLIF resulted in greater adjacent-segment motion compared to unilateral TLIF with the same-size cages. Inferior endplates experienced higher stress during flexion and extension than superior endplates, with this difference being more pronounced in the bilateral model. In bilateral cage placement, stress differences ranged from 46.3% to 60.0%, while they ranged from 1.1% to 9.6% in unilateral cages. Qualitative analysis revealed increased focal stress in unilateral cages versus bilateral cages. CONCLUSIONS: The authors' study shows that using a large unilateral TLIF cage may offer better stability than the bilateral insertion of smaller cages. While large bilateral cages increase adjacent-segment motion, they also provide a uniform stress distribution on the endplates. These findings deepen our understanding of the biomechanics of the available expandable TLIF cages.


Subject(s)
Finite Element Analysis , Lumbar Vertebrae , Range of Motion, Articular , Spinal Fusion , Spinal Fusion/instrumentation , Spinal Fusion/methods , Humans , Lumbar Vertebrae/surgery , Biomechanical Phenomena/physiology , Range of Motion, Articular/physiology , Sacrum/surgery , Internal Fixators
11.
J Neurosurg Spine ; 40(1): 38-44, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37856396

ABSTRACT

Finite element analysis (FEA) is a computer-based mathematical method commonly used in spine and orthopedic biomechanical research. Advances in computational power and engineering modeling and analysis software have enabled many recent technical applications of FEA. Through the use of FEA, a wide range of scenarios can be simulated, such as physiological processes, mechanisms of disease and injury, and the efficacy of surgical procedures. Such models have the potential to enhance clinical studies by allowing comparisons of surgical treatments that would be impractical to perform in human or animal studies, and by linking model results to treatment outcomes. While traditional ex vivo experiments are limited by variabilities in tissue, the complexity of test setup, cost, measurable biomechanical parameters, and the repeatability of experiments, FEA models can be used to measure a wide range of clinically relevant biomechanical parameters. Generic or patient-specific anatomical models can be modified to simulate different clinical and surgical conditions under simulated physiological conditions. Despite these capabilities, there is limited understanding of the clinical applicability and translational potential of FEA models. For spine surgeons, a comprehensive understanding of the key features, strengths, and limitations of FEA models of the spine and their ability to personalize treatment options and assist in clinical decision-making would significantly enhance the impact of FEA research. Furthermore, fostering collaborations between surgeons and engineers could augment the clinical use of these models. The purpose of this review was to highlight key features of FEA model building for clinicians. To illustrate these features, the authors present an example of the use of FEA models in comparing FDA-approved disc arthroplasty implants.


Subject(s)
Software , Spine , Animals , Humans , Finite Element Analysis , Biomechanical Phenomena , Spine/surgery , Arthroplasty
12.
J Eng Sci Med Diagn Ther ; 7(3): 031005, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38059268

ABSTRACT

Advancements in automated vehicles may position the occupant in postures different from the current standard posture. It may affect human tolerance responses. The objective of this study was to determine the lateral bending tolerance of the head-cervical spine with initial head rotation posture using loads at the occipital condyles and lower neck and describe injuries. Using a custom loading device, head-cervical spine complexes from human cadavers were prepared with load cells at the ends. Lateral bending loads were applied to prerotated specimens at 1.5 m/s. At the occipital condyles, peak axial and antero-posterior and medial-lateral shear forces were: 316-954 N, 176-254 N, and 327-508 N, and coronal, sagittal, and axial moments were: 27-38 N·m, 21-38 N·m, and 9.7-19.8 N·m, respectively. At the lower neck, peak axial and shear forces were: 677-1004 N, 115-227 N, and 178-350 N, and coronal, sagittal, and axial moments were: 30-39 N·m, 7.6-21.3 N·m, and 5.7-13.4 N·m, respectively. Ipsilateral atlas lateral mass fractures occurred in four out of five specimens with varying joint diastasis and capsular ligament involvements. Acknowledging that the study used a small sample size, initial tolerances at the occipital condyles and lower neck were estimated using survival analysis. Injury patterns with posture variations are discussed.

13.
Mil Med ; 188(Suppl 6): 598-605, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948200

ABSTRACT

INTRODUCTION: For behind armor blunt trauma (BABT), recent prominent BABT standards for chest plate define a maximum deformation distance of 44 mm in clay. It was developed for soft body armor applications with limited animal, gelatin, and clay tests. The legacy criterion does not account for differing regional thoracoabdominal tolerances to behind armor-induced injury. This study examines the rationale and approaches used in the legacy BABT clay criterion and presents a novel paradigm to develop thoracoabdominal regional injury risk curves. MATERIALS AND METHODS: A review of the original military and law enforcement studies using animals, surrogates, and body armor materials was conducted, and a reanalysis of data was performed. A multiparameter model analysis describes survival-lethality responses using impactor/projectile (mass, diameter, and impact velocity) and specimen (weight and tissue thickness) variables. Binary regression risk curves with ±95% confidence intervals (CIs) and peak deformations from simulant tests are presented. RESULTS: Injury risk curves from 74 goat thorax tests showed that peak deflections of 44.7 mm (±95% CI: 17.6 to 55.4 mm) and 49.9 mm (±95% CI: 24.7 to 60.4 mm) were associated with the 10% and 15% probability of lethal outcomes. 20% gelatin and Roma Plastilina #1 clay were stiffer than goat. The clay was stiffer than 20% gelatin. Penetration diameters showed greater variations (on a test-by-test basis, difference 36-53%) than penetration depths (0-12%) across a range of projectiles and velocities. CONCLUSIONS: While the original authors stressed limitations and the importance of additional tests for refining the 44 mm recommendation, they were not pursued. As live swine tests are effective in developing injury criteria and the responses of different areas of the thoracoabdominal regions are different because of anatomy, structure, and function, a new set of swine and human cadaver tests are necessary to develop scaling relationships. Live swine tests are needed to develop incapacitation/lethal injury risk functions; using scaling relationships, human injury criteria can be developed.


Subject(s)
Forensic Ballistics , Wounds, Nonpenetrating , Humans , Swine , Animals , Gelatin , Clay , Protective Clothing , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/diagnosis , Goats
14.
Mil Med ; 188(Suppl 6): 393-399, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948210

ABSTRACT

INTRODUCTION: Combat-related injuries from improvised explosive devices occur commonly to the lower extremity and spine. As the underbody blast impact loading traverses from the seat to pelvis to spine, energy transfer occurs through deformations of the combined pelvis-sacrum-lumbar spine complex, and the time factor plays a role in injury to any of these components. Previous studies have largely ignored the role of the time variable in injuries, injury mechanisms, and warfighter tolerance. The objective of this study is to relate the time or temporal factor using a multi-component, pelvis-sacrum-lumbar spinal column complex model. MATERIALS AND METHODS: Intact pelvis-sacrum-spine specimens from pre-screened unembalmed human cadavers were prepared by fixing at the superior end of the lumbar spine, pelvis and abdominal contents were simulated, and a weight was added to the cranial end of the fixation to account for torso effective mass. Prepared specimens were placed on the platform of a custom vertical accelerator device and aligned in a seated soldier posture. An accelerometer was attached to the seat platen of the device to record the time duration to peak velocity. Radiographs and computed tomography images were used to document and associate injuries with time duration. RESULTS: The mean age, stature, weight, body mass index, and bone density of 12 male specimens were as follows: 65 ± 11 years, 1.8 ± 0.01 m, 83 ± 13 kg, 27 ± 5.0 kg/m2, and 114 ± 21 mg/cc. They were equally divided into short, medium, and long time durations: 4.8 ± 0.5, 16.3 ± 7.3, and 34.5 ± 7.5 ms. Most severe injuries associated with the short time duration were to pelvis, although they were to spine for the long time duration. CONCLUSIONS: With adequate time for the underbody blast loading to traverse the pelvis-sacrum-spine complex, distal structures are spared while proximal/spine structures sustain severe/unstable injuries. The time factor may have implications in seat and/or seat structure design in future military vehicles to advance warfighter safety.


Subject(s)
Blast Injuries , Spinal Injuries , Humans , Male , Middle Aged , Aged , Sacrum/injuries , Spinal Injuries/etiology , Explosions , Pelvis/injuries , Lumbar Vertebrae , Cadaver , Biomechanical Phenomena
15.
Mil Med ; 188(Suppl 6): 385-392, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948211

ABSTRACT

INTRODUCTION: This study quantified parameters related to muscle morphology using a group of upright seated female and male volunteers with a head-supported mass. MATERIALS AND METHODS: Upright magnetic resonance images (MRIs) were obtained from 23 healthy volunteers after approval from the U.S. DoD. They were asymptomatic for neck pain, with no history of injury. The volunteers were scanned using an upright MRI scanner with a head-supported mass (army combat helmet). T1 and T2 sagittal and axial images were obtained. Measurements were performed by an engineer and a neurosurgeon. The cross-sectional areas of the sternocleidomastoid and multifidus muscles were measured at the inferior endplate in the sub-axial column, and the centroid angle and centroid radius were quantified. Differences in the morphology by gender and spinal level were analyzed using a repeated measures analysis of variance model, adjusted for multiple corrections. RESULTS: For females and males, the cross-sectional area of the sternocleidomastoid muscle ranged from 2.3 to 3.6 cm2 and from 3.4 to 5.4 cm2, the centroid radius ranged from 4.1 to 5.1 cm and from 4.7 to 5.7 cm, and the centroid angle ranged from 75° to 131° and from 4.8° to 131.2°, respectively. For the multifidus muscle, the area ranged from 1.7 to 3.9 cm2 and from 2.4 to 4.2 cm2, the radius ranged from 3.1 to 3.4 cm and from 3.3 to 3.8 cm, the angle ranged from 15° to 24.4° and 16.2° to 24.4°, respectively. Results from all levels for both muscles and male and female spines are given. CONCLUSIONS: The cross-sectional area, angulation, and centroid radii data for flexor and extensor muscles of the cervical spine serve as a dataset that may be used to better define morphologies in computational models and obtain segmental motions and loads under external mechanical forces. These data can be used in computational models for injury prevention, mitigation, and readiness.


Subject(s)
Muscle, Skeletal , Neck Muscles , Humans , Male , Female , Neck Muscles/diagnostic imaging , Preliminary Data , Cervical Vertebrae , Magnetic Resonance Imaging , Volunteers
16.
Mil Med ; 188(Suppl 6): 634-641, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948230

ABSTRACT

INTRODUCTION: Prevention and treatment of traumatic brain injuries is critical to preserving soldier brain health. Laboratory studies are commonly used to reproduce injuries, understand injury mechanisms, and develop tolerance limits; however, this approach has limitations for studying brain injury, which requires a physiological response. The nonhuman primate (NHP) has been used as an effective model for investigating brain injury for many years. Prior research using the NHP provides a valuable resource to leverage using modern analysis and modeling techniques to improve our understanding of brain injury. The objectives of the present study are to develop an anatomically accurate finite element model of the NHP and determine regional brain responses using previously collected NHP data. MATERIALS AND METHODS: The finite element model was developed using a neuroimaging-based anatomical atlas of the rhesus macaque that includes both cortical and subcortical structures. Head kinematic data from 10 sagittal NHP experiments, four +Gx (rearward) and six -Gx (frontal), were used to test model stability and obtain brain strain responses from multiple severities and vectors. RESULTS: For +Gx tests, the whole-brain cumulative strain damage measure exceeding a strain threshold of 0.15 (CSDM15) ranged from 0.28 to 0.89, and 95th percentile of the whole-brain maximum principal strain (MPS95) ranged from 0.21 to 0.59. For -Gx tests, whole-brain CSDM15 ranged from 0.02 to 0.66, and whole-brain MPS95 ranged from 0.08 to 0.39. CONCLUSIONS: Recognizing that NHPs are the closest surrogate to humans combined with the limitations of conducting brain injury research in the laboratory, a detailed anatomically accurate finite element model of an NHP was developed and exercised using previously collected data from the Naval Biodynamics Laboratory. The presently developed model can be used to conduct additional analyses to act as pilot data for the design of newer experiments with statistical power because of the sensitivity and resources needed to conduct experiments with NHPs.


Subject(s)
Brain Injuries , Head , Animals , Humans , Finite Element Analysis , Macaca mulatta , Brain/diagnostic imaging , Biomechanical Phenomena
17.
Mil Med ; 188(Suppl 6): 420-427, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948232

ABSTRACT

INTRODUCTION: Because brain regions are responsible for specific functions, regional damage may cause specific, predictable symptoms. However, the existing brain injury criteria focus on whole brain response. This study developed and validated a detailed human brain computational model with sufficient fidelity to include regional components and demonstrate its feasibility to obtain region-specific brain strains under selected loading. METHODS: Model development used the Simulated Injury Monitor (SIMon) model as a baseline. Each SIMon solid element was split into 8, with each shell element split into 4. Anatomical regions were identified from FreeSurfer fsaverage neuroimaging template. Material properties were obtained from literature. The model was validated against experimental intracranial pressure, brain-skull displacement, and brain strain data. Model simulations used data from laboratory experiments with a rigid arm pendulum striking a helmeted head-neck system. Data from impact tests (6 m/s) at 2 helmet sites (front and left) were used. RESULTS: Model validation showed good agreement with intracranial pressure response, fair to good agreement with brain-skull displacement, and good agreement for brain strain. CORrelation Analysis scores were between 0.72 and 0.93 for both maximum principal strain (MPS) and shear strain. For frontal impacts, regional MPS was between 0.14 and 0.36 (average of left and right hemispheres). For lateral impacts, MPS was between 0.20 and 0.48 (left hemisphere) and between 0.22 and 0.51 (right hemisphere). For frontal impacts, regional cumulative strain damage measure (CSDM20) was between 0.01 and 0.87. For lateral impacts, CSDM20 was between 0.36 and 0.99 (left hemisphere) and between 0.09 and 0.93 (right hemisphere). CONCLUSIONS: Recognizing that neural functions are related to anatomical structures and most model-based injury metrics focus on whole brain response, this study developed an anatomically accurate human brain model to capture regional responses. Model validation was comparable with current models. The model provided sufficient anatomical detail to describe brain regional responses under different impact conditions.


Subject(s)
Brain Injuries , Head , Humans , Finite Element Analysis , Brain/diagnostic imaging , Brain/physiology , Intracranial Pressure , Biomechanical Phenomena
18.
Mil Med ; 188(Suppl 6): 458-465, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948251

ABSTRACT

INTRODUCTION: The evolution of military helmet devices has increased the amount of head-supported mass (HSM) worn by warfighters. HSM has important implications for spine biomechanics, and yet, there is a paucity of studies that investigated the effects of differing HSM and accelerative profiles on spine biomechanics. The aim of this study is to investigate the segmental motions in the subaxial cervical spine with different sizes of HSM under Gx accelerative loading. METHODS: A three-dimensional finite element model of the male head-neck spinal column was used. Three different size military helmets were modeled and incorporated into head-neck model. The models were exercised under Gx accelerative loading by inputting low and high pulses to the cervical vertebra used in the experimental studies. Segmental motions were obtained and normalized with respect to the non-HSM case to quantify the effect of HSM. RESULTS: Segmental motions increased with an increase in velocity at all segments of the spine. Increasing helmet size resulted in larger motion increases. Angulations ranged from 0.9° to 9.3° at 1.8 m/s and from 1.3° to 10.3° at 2.6 m/s without a helmet. Helmet increased motion between 5% to 74% at 1.8 m/s. At 2.6 m/s, the helmet increased segmental motion anywhere from 10% to 105% in the subaxial cervical spine. The greatest motion was seen at the C5-C6 level, followed by the C6-C7 level. CONCLUSIONS: The subaxial cervical spine experiences motion increases at all levels at both velocity profiles with increasing HSM. Larger helmet and greater impact velocity increased motion at all levels, with C5-C6 demonstrating the largest range of motion. HSM should be minimized to reduce the risk of cervical spine injury to the warfighter.


Subject(s)
Cervical Vertebrae , Spinal Injuries , Humans , Male , Cervical Vertebrae/injuries , Neck , Biomechanical Phenomena , Spinal Injuries/etiology , Head , Range of Motion, Articular
19.
Accid Anal Prev ; 193: 107329, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783162

ABSTRACT

The purpose of the study was to determine the bone mineral densities (BMDs) of the C1 and C2 vertebrae and discuss their implications for autonomous vehicle environments and vulnerable road users. Using quantitated computed tomography (QCT), the BMDs were obtained at eight regions for the C1 vertebra and seven regions for the C2 vertebra. The spine surgeon author outlined the boundaries of each region, and nine elderly female human cadaver specimens were used. The regions were based on potential stabilization locations for fracture fixation. In the C1 vertebra, the BMD was greatest at the anterior tubercle, followed by the posterior tubercle, the posterior arch, and the lateral and anterior lateral masses. In the C2 vertebra, the distal odontoid had the greatest BMD, followed by the spinous process, the C2-lateral mass, the odontoid-body interface, and the anterior inferior aspect of the body. Use of these data in female-specific finite element models may lead to a better understanding of load paths, injuries, mechanisms, and tolerance.


Subject(s)
Accidents, Traffic , Bone Density , Humans , Female , Aged , Cervical Vertebrae/diagnostic imaging , Cadaver
20.
Accid Anal Prev ; 193: 107294, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37722257

ABSTRACT

The objective of the present study was to analyze injuries and their patterns to obese occupants in frontal impacts with upright and reclined postures using experimental data. Twelve obese post-mortem human subjects (PMHS) were positioned on a sled buck with seatback angles of 250 or 450 from the vertical, termed as upright and reclined postures. They were restrained with a seat belt and pretensioner. Frontal impact tests were conducted at 8.9 or 13.9 m/s, termed as low and high velocities. After the test, x-rays and CTs were taken, and an autopsy was conducted. The Maximum AIS (MAIS) and Injury Severity Score (ISS) were calculated, and injury patterns were analyzed. The mean age, stature, total body mass, and body mass indexes were 67 years, 112 kg, and 1.7 m, and 38 kg/m2. None of these parameters were statistically significantly different between any groups. The mean thickness of the soft tissues in the left anterior lateral, central, and right anterior lateral aspects were 44 mm, 24 mm, and 46 mm. In the low-velocity tests, the ISS data were 9, 18, and 9 for the upright, and 9, 9, and 4 for the reclined specimens, and in the high velocity tests, they were 29, 17, and 27 for the upright, and 27, 13, and 27 for the reclined postures. Other data are given in the paper. For both postures at the low velocity, injuries were concentrated at one body region, and the ISS data were in the mild category; in contrast, at the high velocity, other body regions also sustained injuries, and the ISS data were in the major trauma category. From MAIS perspectives, injuries to obese occupants did not change between postures and were independent of the energy input to the system. The association of chest with pelvis injuries in upright and reclined postures to obese occupants may have additional consequences following the initial injury to this group of our population.

SELECTION OF CITATIONS
SEARCH DETAIL