Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Cachexia Sarcopenia Muscle ; 15(3): 883-896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575520

ABSTRACT

BACKGROUND: Glycative stress, characterized by the formation and accumulation of advanced glycation end products (AGEs) associated with protein glycation reactions, has been implicated in inducing a decline of muscle function. Although the inverse correlation between glycative stress and muscle mass and strength has been demonstrated, the underlying molecular mechanisms are not fully understood. This study aimed to elucidate how glycative stress affects the skeletal muscle, particularly the adaptive muscle response to hypertrophic stimuli and its molecular mechanism. METHODS: Male C57BL/6NCr mice were randomly divided into the following two groups: the bovine serum albumin (BSA)-treated and AGE-treated groups. Mice in the AGE-treated group were intraperitoneally administered AGEs (0.5 mg/g) once daily, whereas those in the BSA-treated group received an equal amount of BSA (0.5 mg/g) as the vehicle control. After 7 days of continuous administration, the right leg plantaris muscle of mice in each group underwent functional overload treatment by synergist ablation for 7 days to induce muscle hypertrophy. In in vitro studies, cultured C2C12 myocytes were treated with AGEs (1 mg/mL) to examine cell adhesion and cell membrane permeability. RESULTS: Continuous AGE administration increased the levels of fluorescent AGEs, Nε-(carboxymethyl) lysine, and methylglyoxal-derived hydroimidazolone-1 in both plasma and skeletal muscle. Plantaris muscle weight, muscle fibre cross-sectional area, protein synthesis rate, and the number of myonuclei increased with functional overload in both groups; however, the increase was significantly reduced by AGE treatment. Some muscles of AGE-treated mice were destroyed by functional overload. Proteomic analysis was performed to explore the mechanisms of muscle hypertrophy suppression and myofibre destruction by AGEs. When principal component analysis was performed on 4659 data obtained by proteomic analysis, AGE treatment was observed to affect protein expression only in functionally overloaded muscles. Enrichment analysis of the 436 proteins extracted using the K-means method further identified a group of proteins involved in cell adhesion. Consistent with this finding, dystrophin-glycoprotein complex proteins and cell adhesion-related proteins were confirmed to increase with functional overload; however, this was attenuated by AGE treatment. Additionally, the treatment of C2C12 muscle cells with AGEs inhibited their ability to adhere and increased cell membrane permeability. CONCLUSIONS: This study indicates that glycative stress may be a novel pathogenic factor in skeletal muscle dysfunctions by causing loss of membrane integrity and preventing muscle mass gain.


Subject(s)
Cell Membrane , Glycation End Products, Advanced , Hypertrophy , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Glycation End Products, Advanced/metabolism , Cell Membrane/metabolism , Male , Disease Models, Animal
2.
Physiol Rep ; 11(8): e15673, 2023 04.
Article in English | MEDLINE | ID: mdl-37078449

ABSTRACT

Mounting evidence links Type 1 diabetes (T1D) with cognitive dysfunction, psychiatric disorders, and synaptic alterations; however, the underlying mechanism remains unclear. Numerous synaptic proteins and synaptic adhesion molecules (SAMs) that orchestrate synaptic formation, restructuring, and elimination are essential for proper brain function. Currently, it is unclear whether the pathogenesis of T1D is related to the expression of synaptic proteins and SAMs. Here, we investigated whether T1D mice exhibited altered synaptic protein and SAM expression in the hippocampus and cortex. We discovered that T1D mice exhibited partially decreased levels of excitatory and inhibitory synapse proteins and SAMs, such as neurexins, neuroligins, and synaptic cell adhesion molecules. We also found that compared to control mice, T1D mice showed a marginal decrease in body weight and a significant increase in plasma glycoalbumin levels (a hyperglycemia marker). These results provide novel molecular-level insights into synaptic dysfunction in mice with T1D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Animals , Mice , Mice, Inbred NOD , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Hippocampus/metabolism , Cell Adhesion Molecules/metabolism , Synapses/metabolism
3.
FASEB J ; 36(12): e22645, 2022 12.
Article in English | MEDLINE | ID: mdl-36349991

ABSTRACT

Melanocortin-4 receptor (MC4R) is a critical regulator of appetite and energy expenditure in rodents and humans. MC4R deficiency causes hyperphagia, reduced energy expenditure, and impaired glucose metabolism. Ligand binding to MC4R activates adenylyl cyclase, resulting in increased levels of intracellular cyclic adenosine monophosphate (cAMP), a secondary messenger that regulates several cellular processes. Cyclic adenosine monophosphate responsive element-binding protein-1-regulated transcription coactivator-1 (CRTC1) is a cytoplasmic coactivator that translocates to the nucleus in response to cAMP and is reportedly involved in obesity. However, the precise mechanism through which CRTC1 regulates energy metabolism remains unknown. Additionally, there are no reports linking CRTC1 and MC4R, although both CRTC1 and MC4R are known to be involved in obesity. Here, we demonstrate that mice lacking CRTC1, specifically in MC4R cells, are sensitive to high-fat diet (HFD)-induced obesity and exhibit hyperphagia and increased body weight gain. Moreover, the loss of CRTC1 in MC4R cells impairs glucose metabolism. MC4R-expressing cell-specific CRTC1 knockout mice did not show changes in body weight gain, food intake, or glucose metabolism when fed a normal-chow diet. Thus, CRTC1 expression in MC4R cells is required for metabolic adaptation to HFD with respect to appetite regulation. Our results revealed an important protective role of CRTC1 in MC4R cells against dietary adaptation.


Subject(s)
Insulin Resistance , Receptor, Melanocortin, Type 4 , Humans , Mice , Animals , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Hyperphagia/genetics , Hyperphagia/metabolism , Obesity/genetics , Obesity/metabolism , Energy Metabolism , Mice, Knockout , Transcription Factors/metabolism , Glucose , Adenosine Monophosphate/metabolism
4.
PLoS One ; 17(8): e0273056, 2022.
Article in English | MEDLINE | ID: mdl-35998179

ABSTRACT

Substantial evidence suggests an important role of liver function in brain health. Liver function is clinically assessed by measuring the activity of hepatic enzymes in the peripheral blood. Brain-derived neurotrophic factor (BDNF) is an important regulator of brain function. Therefore, we hypothesized that blood BDNF levels are associated with liver function and fibrosis. To test this hypothesis, in this cross-sectional study, we investigated whether serum BDNF concentration is associated with liver enzyme activity, aspartate aminotransferase (AST)/ alanine aminotransferase (ALT) ratio, and fibrosis-4 (FIB-4) index in middle-aged and older women. We found that serum BDNF level showed a significant positive association with ALT and γ-glutamyltranspeptidase (GGT) activity and negative association with FIB-4 index, and a trend of negative association with the AST/ALT ratio after adjustment for age. Additionally, these associations remained statistically significant even after adjustment for body mass index (BMI) and fasting blood glucose level. These results demonstrate associations of serum BDNF levels with liver enzymes and hepatic fibrosis-related indices, which may underlie liver-brain interactions.


Subject(s)
Brain-Derived Neurotrophic Factor/blood , Liver , Aged , Alanine Transaminase , Aspartate Aminotransferases , Cross-Sectional Studies , Female , Humans , Liver Cirrhosis/diagnosis , Middle Aged
5.
Nutrition ; 97: 111607, 2022 05.
Article in English | MEDLINE | ID: mdl-35231855

ABSTRACT

OBJECTIVE: The aim of this study was to observe the relationship of protein intake at each meal and daily total with change in lean tissue mass with progressive resistance exercise training (RET) in healthy middle-aged women. METHODS: Twenty-two healthy Japanese women were recruited from Shiga Prefecture, Japan, and a supervised whole body RET program was conducted twice a week for 16 wk. The dietary intake was assessed using 3-d dietary records. Dual-energy x-ray absorptiometry was used to measure the whole body lean soft tissue mass (WLTM). Multiple regression analysis was performed to examine the relationship between the protein intake and RET-induced changes in the WLTM after adjusting for age, sleep quality, physical activity, and energy intake. RESULTS: The 16-wk RET program caused a significant gain in the WLTM (1.46 ± 0.45%, P = 0.004). Multiple regression analysis showed that the baseline protein intake at breakfast was negatively associated with the percent change in the WLTM (ß = -1.598; P = 0.022). Additionally, the percent change (ß = 0.624; P = 0.018) in protein intake at breakfast was positively associated with the percent change in WLTM. CONCLUSION: Increasing protein intake at breakfast may contribute to RET-induced muscle hypertrophy in middle-aged women, especially among those who habitually consume low-protein levels at breakfast. However, future studies with larger sample sizes are required to confirm the importance of protein intake at breakfast.


Subject(s)
Resistance Training , Body Composition , Dietary Proteins/metabolism , Female , Humans , Hypertrophy/metabolism , Middle Aged , Muscle Strength , Muscle, Skeletal/metabolism , Pilot Projects , Resistance Training/adverse effects
6.
Am J Physiol Endocrinol Metab ; 322(5): E436-E445, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35344393

ABSTRACT

The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.


Subject(s)
GTP-Binding Proteins , Obesity , Receptor, Melanocortin, Type 4 , Animals , Eating , Energy Metabolism , GTP-Binding Proteins/metabolism , Locomotion , Mice , Obesity/metabolism , Receptor, Melanocortin, Type 4/genetics
7.
Int J Mol Sci ; 23(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35163799

ABSTRACT

Endurance exercise induces various adaptations that yield health benefits; however, the underlying molecular mechanism has not been fully elucidated. Given that it has recently been accepted that inflammatory responses are required for a specific muscle adaptation after exercise, this study investigated whether toll-like receptor (TLR) 4, a pattern recognition receptor that induces proinflammatory cytokines, is responsible for exercise-induced adaptations in mouse skeletal muscle. The TLR4 mutant (TLR4m) and intact TLR4 control mice were each divided into 2 groups (sedentary and voluntary wheel running) and were housed for six weeks. Next, we removed the plantaris muscle and evaluated the expression of cytokines and muscle regulators. Exercise increased cytokine expression in the controls, whereas a smaller increase was observed in the TLR4m mice. Mitochondrial markers and mitochondrial biogenesis inducers, including peroxisome proliferator-activated receptor beta and heat shock protein 72, were increased in the exercised controls, whereas this upregulation was attenuated in the TLR4m mice. In contrast, exercise increased the expression of molecules such as peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and glucose transporter 4 in both the controls and TLR4m mice. Our findings indicate that exercise adaptations such as mitochondrial biogenesis are mediated via TLR4, and that TLR4-mediated inflammatory responses could be involved in the mechanism of adaptation.


Subject(s)
Endurance Training/veterinary , Inflammation/genetics , Lipopolysaccharides/adverse effects , Muscle, Skeletal/immunology , Toll-Like Receptor 4/genetics , Adaptation, Physiological , Animals , Cytokines/metabolism , Glucose Transporter Type 4/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Male , Mice , Mitochondria, Muscle/metabolism , Muscle, Skeletal/drug effects , Mutation , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , Up-Regulation
8.
J Appl Physiol (1985) ; 132(2): 477-488, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35023763

ABSTRACT

Endurance exercise triggers skeletal muscle adaptations, including enhanced insulin signaling, glucose metabolism, and mitochondrial biogenesis. However, exercise-induced skeletal muscle adaptations may not occur in some cases, a condition known as exercise resistance. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite and has detrimental effects on the body such as causing diabetic complications, mitochondrial dysfunction, and inflammation. This study aimed to clarify the effect of methylglyoxal on skeletal muscle molecular adaptations following endurance exercise. Mice were randomly divided into four groups (n = 12/group): sedentary control group, voluntary exercise group, MG-treated group, and MG-treated with voluntary exercise group. Mice in the voluntary exercise group were housed in a cage with a running wheel, whereas mice in the MG-treated groups received drinking water containing 1% MG. Four weeks of voluntary exercise induced several molecular adaptations in the plantaris muscle, including increased expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), mitochondria complex proteins, Toll-like receptor 4 (TLR4), 72-kDa heat shock protein (HSP72), hexokinase II, and glyoxalase 1; this also enhanced insulin-stimulated Akt Ser473 phosphorylation and citrate synthase activity. However, these adaptations were suppressed with MG treatment. In the soleus muscle, the exercise-induced increases in the expression of TLR4, HSP72, and advanced glycation end products receptor 1 were inhibited with MG treatment. These findings suggest that MG is a factor that inhibits endurance exercise-induced molecular responses including mitochondrial adaptations, insulin signaling activation, and the upregulation of several proteins related to mitochondrial biogenesis, glucose handling, and glycation in primarily fast-twitch skeletal muscle.NEW & NOTEWORTHY This study investigated the effect of methylglyoxal, which is a highly reactive carbonyl metabolite and has detrimental effects on the body, on skeletal muscle adaptations following endurance exercise. Evidences from this study show that methylglyoxal is a factor deteriorating responsiveness to endurance exercise in primarily fast-twitch skeletal muscle. The findings contribute to understand the internal factors that should be focused to maximize the exercise effects.


Subject(s)
Physical Conditioning, Animal , Pyruvaldehyde , Animals , Mice , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/physiology , Pyruvaldehyde/metabolism , Pyruvaldehyde/pharmacology , Transcription Factors/metabolism
9.
PLoS One ; 17(1): e0262577, 2022.
Article in English | MEDLINE | ID: mdl-35020776

ABSTRACT

cAMP responsive element binding protein (CREB)-regulated transcription coactivators (CRTCs) regulate gene transcription in response to an increase in intracellular cAMP or Ca2+ levels. To date, three isoforms of CRTC have been identified in mammals. All CRTCs are widely expressed in various regions of the brain. Numerous studies have shown the importance of CREB and CRTC in energy homeostasis. In the brain, the paraventricular nucleus of the hypothalamus (PVH) plays a critical role in energy metabolism, and CRTC1 and CRTC2 are highly expressed in PVH neuronal cells. The single-minded homolog 1 gene (Sim1) is densely expressed in PVH neurons and in some areas of the amygdala neurons. To determine the role of CRTCs in PVH on energy metabolism, we generated mice that lacked CRTC1 and CRTC2 in Sim1 cells using Sim-1 cre mice. We found that Sim1 cell-specific CRTC1 and CRTC2 double-knockout mice were sensitive to high-fat diet (HFD)-induced obesity. Sim1 cell-specific CRTC1 and CRTC2 double knockout mice showed hyperphagia specifically for the HFD, but not for the normal chow diet, increased fat mass, and no change in energy expenditure. Interestingly, these phenotypes were stronger in female mice than in male mice, and a weak phenotype was observed in the normal chow diet. The lack of CRTC1 and CRTC2 in Sim1 cells changed the mRNA levels of some neuropeptides that regulate energy metabolism in female mice fed an HFD. Taken together, our findings suggest that CRTCs in Sim1 cells regulate gene expression and suppress excessive fat intake, especially in female mice.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Diet, High-Fat , Energy Metabolism , Hyperphagia/pathology , Obesity/pathology , Repressor Proteins/metabolism , Transcription Factors/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Feeding Behavior , Female , Hyperphagia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Repressor Proteins/genetics
10.
Physiol Rep ; 9(9): e14869, 2021 05.
Article in English | MEDLINE | ID: mdl-33991466

ABSTRACT

Myoglobin is an important regulator of muscle and whole-body metabolism and exercise capacity. Caffeine, an activator of the calcium and cyclic AMP (cAMP)/protein kinase A (PKA) pathway, enhances glucose uptake, fat oxidation, and mitochondrial biogenesis in skeletal muscle cells. However, no study has shown that caffeine increases the endogenous expression of myoglobin in muscle cells. Further, the molecular mechanism underlying the regulation of myoglobin expression remains unclear. Therefore, our aim was to investigate whether caffeine and activators of the calcium signaling and cAMP/PKA pathway increase the expression of myoglobin in L6 myotubes and whether the pathway mediates caffeine-induced myoglobin expression. Caffeine increased myoglobin expression and activated the cAMP/PKA pathway in L6 muscle cells. Additionally, a cAMP analog significantly increased myoglobin expression, whereas a ryanodine receptor agonist showed no significant effect. Finally, PKA inhibition significantly suppressed caffeine-induced myoglobin expression in L6 myotubes. These results suggest that caffeine increases myoglobin expression via the cAMP/PKA pathway in skeletal muscle cells.


Subject(s)
Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Cyclic AMP/metabolism , Muscle Fibers, Skeletal/drug effects , Myoglobin/metabolism , Animals , Cell Line , Muscle Fibers, Skeletal/metabolism , Myoglobin/genetics , Rats
11.
Biochem Biophys Res Commun ; 529(3): 733-739, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736700

ABSTRACT

The vitamin D pathway is related to the mass and function of skeletal muscles. Several studies have demonstrated the role of vitamin D receptor (VDR) and CYP27B1 in skeletal muscles, suggesting that these proteins may regulate skeletal muscles and their function. However, it remains unclear whether the expression of VDR and CYP27B1 is modified in skeletal muscle atrophy. We investigated whether denervation-induced muscle atrophy is associated with altered expression of VDR and CYP27B1 in murine skeletal muscles. Skeletal muscles were excised from C57BL/6J mice, 3 and 7 days after the mice underwent denervation surgery. Denervation induced muscle atrophy and enhanced the expression of MuRF1 and Atrogin-1 in the gastrocnemius and soleus. The protein expression of VDR was increased in the denervated gastrocnemius; in contrast, denervation decreased the protein expression of CYP27B1 in the gastrocnemius and soleus. These results suggest that denervation-induced muscle atrophy is associated with changes in the expression of vitamin D-related proteins in murine skeletal muscles.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/analysis , Muscular Atrophy/pathology , Receptors, Calcitriol/analysis , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Muscle Denervation , Muscular Atrophy/metabolism , Proteasome Endopeptidase Complex/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction , Ubiquitin/metabolism
12.
Biochem Biophys Res Commun ; 528(3): 612-619, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32505344

ABSTRACT

Substantial evidence has linked dehydroepiandrosterone (DHEA) levels to the anti-obesity and anti-diabetic effects of exercise. While 5'-adenosine monophosphate-activated protein kinase (AMPK) is a negative regulator of adipocyte differentiation and lipid accumulation, activation of mammalian target of rapamycin complex 1 (mTORC1), which is inhibited by AMPK, is required for adipocyte differentiation and positively regulates lipid accumulation. DHEA treatment activates the AMPK pathway in C2C12 myotubes. Hence, DHEA addition to preadipocytes and adipocytes might activate AMPK and inhibit mTORC1, resulting in the inhibition of adipogenesis and lipid accumulation. Therefore, we investigated the effect of DHEA on the AMPK pathway, mTORC1 activity, adipocyte differentiation, and lipid accumulation in 3T3-L1 cells. DHEA suppressed lipid accumulation and adipogenic marker expression during differentiation. It also activated AMPK signaling in preadipocytes and adipocytes and suppressed mTORC1 activity during differentiation. These results suggest that the activation of the AMPK pathway and inhibition of mTORC1 activity may mediate the anti-obesity effect of DHEA, providing novel molecular-level insights into its physiological functions.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Dehydroepiandrosterone/pharmacology , Lipid Metabolism/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipogenesis/drug effects , Animals , Cell Differentiation/drug effects , Dehydroepiandrosterone/metabolism , Enzyme Activation/drug effects , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Obesity/metabolism , Obesity/prevention & control , Signal Transduction/drug effects
13.
Sci Rep ; 10(1): 8509, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444657

ABSTRACT

Acute aerobic exercise (AE) increases skeletal muscle insulin sensitivity for several hours, caused by acute activation of AMP-activated protein kinase (AMPK). Acute resistance exercise (RE) also activates AMPK, possibly improving insulin-stimulated glucose uptake. However, RE-induced rapamycin-sensitive mechanistic target of rapamycin complex 1 (mTORC1) activation is higher and has a longer duration than after AE. In molecular studies, mTORC1 was shown to be upstream of insulin receptor substrate 1 (IRS-1) Ser phosphorylation residue, inducing insulin resistance. Therefore, we hypothesised that although RE increases insulin sensitivity through AMPK activation, prolonged mTORC1 activation after RE reduces RE-induced insulin sensitising effect. In this study, we used an electrical stimulation-induced RE model in rats, with rapamycin as an inhibitor of mTORC1 activation. Our results showed that RE increased insulin-stimulated glucose uptake following AMPK signal activation. However, mTORC1 activation and IRS-1 Ser632/635 and Ser612 phosphorylation were elevated 6 h after RE, with concomitant impairment of insulin-stimulated Akt signal activation. By contrast, rapamycin inhibited these prior exercise responses. Furthermore, increases in insulin-stimulated skeletal muscle glucose uptake 6 h after RE were higher in rats with rapamycin treatment than with placebo treatment. Our data suggest that mTORC1/IRS-1 signaling inhibition enhances skeletal muscle insulin-sensitising effect of RE.


Subject(s)
Glucose/pharmacology , Insulin Resistance , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Sirolimus/pharmacology , Animals , Insulin/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle, Skeletal/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Sweetening Agents/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
Biochem Biophys Res Commun ; 527(1): 146-152, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32446358

ABSTRACT

The mitochondrial translation process, in which mitochondrial DNA (mtDNA)-encoded genes are translated into their corresponding proteins, is crucial for mitochondrial function, biogenesis, and integrity. This process is divided into four phases-initiation, elongation, termination, and mitoribosome recycling-which are regulated by specific translation factors, including mitochondrial initiation factor 2 and 3 (mtIF2 and mtIF3), mitochondrial elongation factor Tu, Ts, and G1 (mtEFTu, mtEFTs, and mtEFG1), mitochondrial translational release factor 1-like (mtRF1L), and mitochondrial recycling factor 1 and 2 (mtRRF1 and mtRRF2). Muscle denervation downregulates mitochondrial biomass and induces skeletal muscle atrophy. However, it is unknown whether denervation affects the expression of mitochondrial translation factors in skeletal muscle. In this study, we hypothesized that denervation decreases the expression of mitochondrial translation factors. Therefore, we investigated the effect of muscle denervation on mitochondrial protein and mitochondrial translation factor expression in soleus muscle after surgery. Denervation induced muscle atrophy and activated the ubiquitin-proteasome pathway in soleus muscle. Additionally, muscle denervation decreased the expression of mitochondrial translation factors as well as nuclear DNA and mtDNA-encoded mitochondrial proteins in soleus muscle. Further, a correlation was found between the expression of mitochondrial translation factors and mtDNA-encoded proteins three and seven days after denervation. Taken together, these results demonstrated that the denervation-induced decrease in mitochondrial biogenesis corresponded with changes in mitochondrial translation factors in murine skeletal muscle, providing novel molecular-level insight into the effects of muscle denervation on the mitochondrial translation process.


Subject(s)
Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Muscle Denervation , Muscle, Skeletal/metabolism , Protein Biosynthesis , Animals , DNA, Mitochondrial/metabolism , Male , Mice , Mice, Inbred C57BL , Muscular Atrophy/metabolism
15.
Foods ; 8(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557885

ABSTRACT

We investigated the protective effect of Brazilian propolis, a natural resinous substance produced by honeybees, against glycation stress in mouse skeletal muscles. Mice were divided into four groups: (1) Normal diet + drinking water, (2) Brazilian propolis (0.1%)-containing diet + drinking water, (3) normal diet + methylglyoxal (MGO) (0.1%)-containing drinking water, and (4) Brazilian propolis (0.1%)-containing diet + MGO (0.1%)-containing drinking water. MGO treatment for 20 weeks reduced the weight of the extensor digitorum longus (EDL) muscle and tended to be in the soleus muscle. Ingestion of Brazilian propolis showed no effect on this change in EDL muscles but tended to increase the weight of the soleus muscles regardless of MGO treatment. In EDL muscles, Brazilian propolis ingestion suppressed the accumulation of MGO-derived advanced glycation end products (AGEs) in MGO-treated mice. The activity of glyoxalase 1 was not affected by MGO, but was enhanced by Brazilian propolis in EDL muscles. MGO treatment increased mRNA expression of inflammation-related molecules, interleukin (IL)-1ß, IL-6, and toll-like receptor 4 (TLR4). Brazilian propolis ingestion suppressed these increases. MGO and/or propolis exerted no effect on the accumulation of AGEs, glyoxalase 1 activity, and inflammatory responses in soleus muscles. These results suggest that Brazilian propolis exerts a protective effect against glycation stress by inhibiting the accumulation of AGEs, promoting MGO detoxification, and reducing proinflammatory responses in the skeletal muscle. However, these anti-glycation effects does not lead to prevent glycation-induced muscle mass reduction.

16.
Physiol Rep ; 6(20): e13893, 2018 10.
Article in English | MEDLINE | ID: mdl-30369085

ABSTRACT

The process of mitochondrial translation, in which mitochondrial (mt)DNA-encoded genes are translated into proteins, is crucial for mitochondrial function and biogenesis. In each phase, a series of mitochondrial translation factors is required for the synthesis of mtDNA-encoded mitochondrial proteins. Two mitochondrial initiation factors (mtIF2 and mtIF3), three mitochondrial elongation factors (mtEFTu, mtEFTs, and mtEFG1), one mitochondrial release factor (mtRF1L), and two mitochondrial recycling factors (mtRRF1 and mtRRF2) are mitochondrial translation factors that coordinate each translational phase. Exercise increases both nuclear DNA- and mtDNA-encoded mitochondrial proteins, resulting in mitochondrial biogenesis in skeletal muscles. Therefore, mitochondrial translation factors are likely regulated by exercise; however, it is unclear whether exercise affects mitochondrial translation factors in the skeletal muscles. We investigated whether exercise training comprehensively increases this series of mitochondrial translation factors, as well as mtDNA-encoded proteins, in the skeletal muscle. Mice were randomly assigned to either the sedentary or exercise group and housed in standard cages with or without a running wheel for 1 and 8 weeks. The expression levels of mitochondrial translation factors in the plantaris and soleus muscles were then measured. Exercise training concomitantly upregulated mitochondrial translation factors and mitochondrial proteins in the plantaris muscle. However, in the soleus muscle, these comprehensive upregulations were not detected. These results indicate that exercise-induced mitochondrial biogenesis coincides with the upregulation of mitochondrial translation factors.


Subject(s)
Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Organelle Biogenesis , Peptide Elongation Factors/metabolism , Peptide Initiation Factors/metabolism , Peptide Termination Factors/metabolism , Physical Conditioning, Animal , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/genetics , Muscle, Skeletal/physiology , Peptide Elongation Factors/genetics , Peptide Initiation Factors/genetics , Peptide Termination Factors/genetics
17.
Biochem Biophys Res Commun ; 506(3): 571-577, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30366664

ABSTRACT

Mitochondrial function in skeletal muscle and white adipose tissue (WAT) declines with aging and the progression of type 2 diabetes and insulin resistance. Although exercise increases mitochondrial biogenesis and function in both tissues, the molecular mechanisms are not fully understood. CDGSH iron sulfur domain-containing proteins (CISDs) are a novel family of proteins that regulate mitochondrial activity and biogenesis. However, the relationship between exercise and CISD expression is unclear. We addressed this in the present study by examining changes in the expression of CISDs and mitochondrial proteins in skeletal muscle and WAT of mice subjected to chronic exercise training. Mice were randomly assigned to either the sedentary or exercise group and were housed for 4 weeks in a standard cage without or with a running wheel, respectively. CISD and mitochondrial protein levels in the plantaris and soleus muscles and epididymal WAT were evaluated by western blotting. Chronic exercise increased CISD1 and CISD2 as well as mitochondrial protein expression in plantaris muscle and WAT but not soleus muscle. Moreover, this exercise-induced adaptation was strongly correlated with mitochondrial protein expression. Thus, mitochondrial biogenesis induced by chronic exercise coincides with the expression of CISDs in specific tissues, which may be critical for the maintenance of mitochondrial integrity.


Subject(s)
Adipose Tissue, White/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Animals , Epididymis/metabolism , Male , Mice, Inbred C57BL
18.
Am J Physiol Endocrinol Metab ; 314(6): E564-E571, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29406784

ABSTRACT

Adapter protein containing Pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1) has been reported as a positive regulator of insulin-stimulated Akt activation. The expression of APPL1 is reduced in skeletal muscles of type 2 diabetic (T2D) animals, implying that APPL1 may be an important factor affecting insulin sensitivity. However, the regulation of APPL1 expression and the physiological interventions modulating these effects are unclear. Accordingly, we first confirmed that APPL1 expression and insulin-induced Akt phosphorylation were significantly attenuated in skeletal muscles of T2D rats. Additionally, we found that APPL1 expression levels were significantly correlated with fasting blood glucose levels. Next, we identified important signals involved in the expression of APPL1. APPL1 mRNA expression increased upon AMP-activated protein kinase, calcium, p38 mitogen-activated protein kinase, and insulin-like growth factor-1 signal activation. Moreover, acute resistance exercise in vivo significantly activated these signaling pathways. Finally, through in vivo experiments, we found that chronic resistance training (RT) increased APPL1 expression and activated insulin-induced Akt signaling in skeletal muscles of rats with T2D. Furthermore, variations in APPL1 expression (i.e., the difference between control and RT muscles) significantly correlated with variations in insulin-stimulated Akt phosphorylation under the same conditions. Therefore, chronic RT recovered attenuated APPL1 expression and improved insulin-stimulated Akt phosphorylation in skeletal muscles of T2D rats. Accordingly, APPL1 may be a key regulator of insulin resistance in skeletal muscle, and RT may be an important physiological treatment increasing APPL1 expression, which is attenuated in T2D.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin/metabolism , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/genetics , Resistance Training , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Down-Regulation/genetics , Insulin/pharmacology , Insulin Resistance/genetics , Mice , Nerve Tissue Proteins/metabolism , Physical Conditioning, Animal/physiology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology
19.
PLoS One ; 12(6): e0178505, 2017.
Article in English | MEDLINE | ID: mdl-28570686

ABSTRACT

Previous studies have demonstrated that an acute bout of aerobic exercise induces a subsequent delayed onset of hypoglycemia among patients with type 1 diabetes. However, the mechanisms of exercise-induced hypoglycemia in type 1 diabetes are still unclear. Streptozotocin (STZ) was injected to 6-week-old male Wistar rats, and three days after STZ injection, animals were randomly assigned into 2 groups: STZ with insulin only (STZ) and STZ with insulin and exercise (STZ+EX). Normal Wistar rats with exercise were used as control (CON+EX). Insulin was intraperitoneally injected (0.5 U/kg) to both STZ groups (-0.5 h), and a bout of aerobic exercise (15 m/min for 30 min) was conducted at euglycemic conditions (0 h). Blood was collected at 0, 1, 3, and 5 h after exercise from the carotid artery. While the blood glucose level was stable during the post-exercise period (0-5 h) in the STZ and CON+EX groups, it decreased significantly only in the STZ+EX group at 3 h. Plasma glucagon, adrenalin, and noradrenalin levels significantly increased at 1 h in the STZ group, whereas significant hormonal responses were observed at 5 h in the STZ+EX group. In skeletal muscle glucose metabolism-related pathway, the level of glucose transporter-4 (GLUT-4) translocation was significantly higher at 1 h in the CON and STZ groups. However, in the STZ+EX group, these activations were maintained by 5 h, indicating a sustained glucose metabolism in the STZ+EX group. A single bout of aerobic exercise induced a delayed onset of hypoglycemia in STZ-treated rats. A prolonged enhancement of GLUT-4 translocation and delayed counter-regulatory hormone responses may have contributed to the induction of hypoglycemia.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Disease Models, Animal , Glucose Transporter Type 4/metabolism , Physical Conditioning, Animal , Animals , Blood Glucose/metabolism , Catecholamines/blood , Glucagon/blood , Glucose-6-Phosphate/blood , Insulin/blood , Male , Protein Transport , Rats , Rats, Wistar , Signal Transduction
20.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R110-R119, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28515080

ABSTRACT

Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting ß-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Insulin/blood , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Resistance Training/methods , Animals , Binding Sites , Male , Phosphorylation/physiology , Physical Conditioning, Animal/methods , Protein Binding , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...