Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38051586

ABSTRACT

The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance is a promising precision medicine approach, and its potential to inform clinical decisions is now being tested in several large multiinstitutional clinical trials. PDOs are cultivated in the extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the effect of different sources of BMEs on organoid drug response is unknown. Here, we tested the effect of BME source on proliferation, drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel compared with Cultrex and UltiMatrix. However, we observed no substantial effect on drug response when organoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their classical or basal-like designation. Overall, we found that the BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves or drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Precision Medicine , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Extracellular Matrix , Organoids/metabolism
2.
Nature ; 619(7968): 176-183, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286593

ABSTRACT

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Subject(s)
Chromosomal Instability , Chromosome Segregation , Chromosomes , Epigenesis, Genetic , Micronuclei, Chromosome-Defective , Neoplasms , Animals , Humans , Mice , Chromatin/genetics , Chromosomal Instability/genetics , Chromosomes/genetics , Chromosomes/metabolism , Histones/chemistry , Histones/metabolism , Neoplasms/genetics , Neoplasms/pathology , Mitosis , DNA Copy Number Variations , Protein Processing, Post-Translational
3.
Nat Commun ; 14(1): 120, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624093

ABSTRACT

IRE1α-XBP1 signaling is emerging as a central orchestrator of malignant progression and immunosuppression in various cancer types. Employing a computational XBP1s detection method applied to TCGA datasets, we demonstrate that expression of the XBP1s mRNA isoform predicts poor survival in non-small cell lung cancer (NSCLC) patients. Ablation of IRE1α in malignant cells delays tumor progression and extends survival in mouse models of NSCLC. This protective effect is accompanied by alterations in intratumoral immune cell subsets eliciting durable adaptive anti-cancer immunity. Mechanistically, cancer cell-intrinsic IRE1α activation sustains mPGES-1 expression, enabling production of the immunosuppressive lipid mediator prostaglandin E2. Accordingly, restoring mPGES-1 expression in IRE1αKO cancer cells rescues normal tumor progression. We have developed an IRE1α gene signature that predicts immune cell infiltration and overall survival in human NSCLC. Our study unveils an immunoregulatory role for cancer cell-intrinsic IRE1α activation and suggests that targeting this pathway may help enhance anti-tumor immunity in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Endoribonucleases , Lung Neoplasms , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
Sci Transl Med ; 14(626): eabf3917, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985972

ABSTRACT

Glioblastomas are universally fatal cancers and contain self-renewing glioblastoma stem cells (GSCs) that initiate tumors. Traditional anticancer drug discovery based on in vitro cultures tends to identify targets with poor therapeutic indices and fails to accurately model the effects of the tumor microenvironment. Here, leveraging in vivo genetic screening, we identified the histone H3 lysine 4 trimethylation (H3K4me3) regulator DPY30 (Dpy-30 histone methyltransferase complex regulatory subunit) as an in vivo­specific glioblastoma dependency. On the basis of the hypothesis that in vivo epigenetic regulation may define critical GSC dependencies, we interrogated active chromatin landscapes of GSCs derived from intracranial patient-derived xenografts (PDXs) and cell culture through H3K4me3 chromatin immunoprecipitation and transcriptome analyses. Intracranial-specific genes marked by H3K4me3 included FOS, NFκB, and phosphodiesterase (PDE) family members. In intracranial PDX tumors, DPY30 regulated angiogenesis and hypoxia pathways in an H3K4me3-dependent manner but was dispensable in vitro in cultured GSCs. PDE4B was a key downstream effector of DPY30, and the PDE4 inhibitor rolipram preferentially targeted DPY30-expressing cells and impaired PDX tumor growth in mice without affecting tumor cells cultured in vitro. Collectively, the MLL/SET1 (mixed lineage leukemia/SET domain-containing 1, histone lysine methyltransferase) complex member DPY30 selectively regulates H3K4me3 modification on genes critical to support angiogenesis and tumor growth in vivo, suggesting the DPY30-PDE4B axis as a specific therapeutic target in glioblastoma.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Glioblastoma , Transcription Factors , Animals , Chromatin , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Epigenesis, Genetic , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Mice , Stem Cells/metabolism , Transcription Factors/metabolism , Tumor Microenvironment
5.
Sci Adv ; 7(45): eabg1964, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739311

ABSTRACT

Selected patients with brain metastases (BM) are candidates for radiotherapy. A lactatogenic metabolism, common in BM, has been associated with radioresistance. We demonstrated that BM express nitric oxide (NO) synthase 2 and that administration of its substrate l-arginine decreases tumor lactate in BM patients. In a placebo-controlled trial, we showed that administration of l-arginine before each fraction enhanced the effect of radiation, improving the control of BM. Studies in preclinical models demonstrated that l-arginine radiosensitization is a NO-mediated mechanism secondary to the metabolic adaptation induced in cancer cells. We showed that the decrease in tumor lactate was a consequence of reduced glycolysis that also impacted ATP and NAD+ levels. These effects were associated with NO-dependent inhibition of GAPDH and hyperactivation of PARP upon nitrosative DNA damage. These metabolic changes ultimately impaired the repair of DNA damage induced by radiation in cancer cells while greatly sparing tumor-infiltrating lymphocytes.

6.
Cell Rep ; 30(3): 755-770.e6, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31968251

ABSTRACT

Epigenetic changes are increasingly being appreciated as key events in breast cancer progression. However, breast cancer subtype-specific epigenetic regulation remains poorly investigated. Here we report that EZH2 is a leading candidate of epigenetic modulators associated with the TNBC subtype and that it predicts poor overall survival in TNBC patients. We demonstrate that specific pharmacological or genetic inhibition of EZH2 catalytic activity impairs distant metastasis. We further define a specific EZH2high population with enhanced invasion, mammosphere formation, and metastatic potential that exhibits marked sensitivity to EZH2 inhibition. Mechanistically, EZH2 inhibition differentiates EZH2high basal cells to a luminal-like phenotype by derepressing GATA3 and renders them sensitive to endocrine therapy. Furthermore, dissection of human TNBC heterogeneity shows that EZH2high basal-like 1 and mesenchymal subtypes have exquisite sensitivity to EZH2 inhibition compared with the EZH2low luminal androgen receptor subtype. These preclinical findings provide a rationale for clinical development of EZH2 as a targeted therapy against TNBC metastasis.


Subject(s)
Biocatalysis , Enhancer of Zeste Homolog 2 Protein/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , Base Sequence , Cell Compartmentation , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Disease Progression , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Epigenesis, Genetic , Female , GATA3 Transcription Factor/metabolism , Humans , Mice, Inbred BALB C , Mice, SCID , Mutant Proteins/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Octamer Transcription Factor-3/metabolism , Phenotype , SOXB1 Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics
7.
Mol Cancer Ther ; 18(3): 579-591, 2019 03.
Article in English | MEDLINE | ID: mdl-30679387

ABSTRACT

Triple-negative breast cancer (TNBC) patients exhibit the worst clinical outcome due to its aggressive clinical course, higher rate of recurrence, and a conspicuous lack of FDA-approved targeted therapies. Here, we show that multilayered nanoparticles (NPs) carrying the metastasis suppressor microRNA miR-708 (miR708-NP) localize to orthotopic primary TNBC, and efficiently deliver the miR-708 cargo to reduce lung metastasis. Using a SOX2/OCT4 promoter reporter, we identified a population of miR-708low cancer cells with tumor-initiating properties, enhanced metastatic potential, and marked sensitivity to miR-708 treatment. In vivo, miR708-NP directly targeted the SOX2/OCT4-mCherry+ miR-708low tumor cells to impair metastasis. Together, our preclinical findings provide a mechanism-based antimetastatic therapeutic approach for TNBC, with a marked potential to generate miR-708 replacement therapy for high-risk TNBC patients in the clinic. To our knowledge, this gold nanoparticle-based delivery of microRNA mimetic is the first oligonucleotide-based targeted therapy for TNBC.


Subject(s)
Metal Nanoparticles/chemistry , MicroRNAs/genetics , Neoplasm Recurrence, Local/drug therapy , Triple Negative Breast Neoplasms/drug therapy , Animals , Biomimetics/methods , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Gold/chemistry , Heterografts , Humans , Mice , MicroRNAs/chemistry , MicroRNAs/pharmacology , Neoplasm Metastasis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , SOXB1 Transcription Factors/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
8.
Front Biol (Beijing) ; 13(4): 277-286, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30774650

ABSTRACT

BACKGROUND: Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research. OBJECTIVE: To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells. METHOD AND RESULT: In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade. CONCLUSION: In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.

9.
Int J Mol Sci ; 18(5)2017 May 18.
Article in English | MEDLINE | ID: mdl-28524082

ABSTRACT

Xenobiotic-induced interstrand DNA-DNA cross-links (ICL) interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) cross-links induced by 1,2,3,4-diepoxybutane (DEB). High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI⁺-MS/MS) assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79) and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.


Subject(s)
DNA Repair/genetics , Epoxy Compounds/pharmacology , Animals , Cell Line , Cricetinae , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Xeroderma Pigmentosum Group A Protein/genetics
10.
Neoplasia ; 19(2): 55-64, 2017 02.
Article in English | MEDLINE | ID: mdl-28013056

ABSTRACT

Molecularly targeted therapies benefit approximately 15-20% of non-small cell lung cancer (NSCLC) patients carrying specific drug-sensitive mutations. Thus, there is a clinically unmet need for the identification of novel targets for drug development. Here, we performed RNA-deep sequencing to identify altered gene expression between malignant and non-malignant lung tissue. Matrix Metalloproteinase 14 (MMP14), a membrane-bound proteinase, was significantly up-regulated in the tumor epithelial cells and intratumoral myeloid compartments in both mouse and human NSCLC. Overexpression of a soluble dominant negative MMP14 (DN-MMP14) or pharmacological inhibition of MMP14 blocked invasion of lung cancer cells through a collagen I matrix in vitro and reduced tumor incidence in an orthotopic K-RasG12D/+p53-/- mouse model of lung cancer. Additionally, MMP14 activity mediated proteolytic processing and activation of Heparin-Binding EGF-like Growth Factor (HB-EGF), stimulating the EGFR signaling pathway to increase proliferation and tumor growth. This study highlights the potential for development of therapeutic strategies that target MMP14 in NSCLC with particular focus on MMP14-HB-EGF axis.


Subject(s)
Heparin-binding EGF-like Growth Factor/metabolism , Lung Neoplasms/metabolism , Matrix Metalloproteinase 14/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Collagen Type I/metabolism , Disease Models, Animal , ErbB Receptors/metabolism , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Matrix Metalloproteinase 14/genetics , Mice , Neoplasm Staging , Proteolysis , Signal Transduction , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...