Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(15): 8407-8418, 2021 09 07.
Article in English | MEDLINE | ID: mdl-33907814

ABSTRACT

In bacterial synthetic biology, whole genome transplantation has been achieved only in mycoplasmas that contain a small genome and are competent for foreign genome uptake. In this study, we developed Escherichia coli strains programmed by three 1-megabase (Mb) chromosomes by splitting the 3-Mb chromosome of a genome-reduced strain. The first split-chromosome retains the original replication origin (oriC) and partitioning (par) system. The second one has an oriC and the par locus from the F plasmid, while the third one has the ori and par locus of the Vibrio tubiashii secondary chromosome. The tripartite-genome cells maintained the rod-shaped form and grew only twice as slowly as their parent, allowing their further genetic engineering. A proportion of these 1-Mb chromosomes were purified as covalently closed supercoiled molecules with a conventional alkaline lysis method and anion exchange columns. Furthermore, the second and third chromosomes could be individually electroporated into competent cells. In contrast, the first split-chromosome was not able to coexist with another chromosome carrying the same origin region. However, it was exchangeable via conjugation between tripartite-genome strains by using different selection markers. We believe that this E. coli-based technology has the potential to greatly accelerate synthetic biology and synthetic genomics.


Subject(s)
Chromosomes, Bacterial/genetics , Escherichia coli/genetics , F Factor/genetics , Genome, Bacterial/genetics , DNA Replication/genetics , Escherichia coli/growth & development , Replication Origin/genetics , Synthetic Biology/trends , Vibrio/genetics
2.
ACS Synth Biol ; 9(6): 1315-1327, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32459960

ABSTRACT

Although Escherichia coli has been a popular tool for plasmid construction, this bacterium was believed to be "unsuitable" for constructing a large plasmid whose size exceeds 500 kilobases. We assumed that traditional plasmid vectors may lack some regulatory DNA elements required for the stable replication and segregation of such a large plasmid. In addition, the use of a few site-specific recombination systems may facilitate cloning of large DNA segments. Here we show two strategies for constructing 1-megabase (1-Mb) secondary chromosomes by using new bacterial artificial chromosome (BAC) vectors. First, the 3-Mb genome of a genome-reduced E. coli strain was split into two chromosomes (2-Mb and 1-Mb), of which the smaller one has the origin of replication and the partitioning locus of the Vibrio tubiashii secondary chromosome. This chromosome fission method (Flp-POP cloning) works via flippase-mediated excision, which coincides with the reassembly of a split chloramphenicol resistance gene, allowing chloramphenicol selection. Next, we developed a new cloning method (oriT-POP cloning) and a fully equipped BAC vector (pMegaBAC1H) for developing a 1-Mb plasmid. Two 0.5-Mb genomic regions were sequentially transferred from two donor strains to a recipient strain via conjugation and captured by pMegaBAC1H in the recipient strain to produce a 1-Mb plasmid. This 1-Mb plasmid was transmissible to another E. coli strain via conjugation. Furthermore, these 1-Mb secondary chromosomes were amplifiable in vitro by using the reconstituted E. coli chromosome replication cycle reaction (RCR). These strategies and technologies would make popular E. coli cells a productive factory for designer chromosome engineering.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Escherichia coli/metabolism , Genetic Vectors/metabolism , Chloramphenicol/pharmacology , DNA Replication/drug effects , Genetic Engineering/methods , Genetic Vectors/genetics , Recombination, Genetic , Vibrio/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...